
ESD-TR-76-351, Vol. 11

SECURE COMMUNICATIONS
PROCESSOR SPECIFICATION

Honeywell Information Systems, Inc.
Federal Systems Division
7900 Westpark Drive
McLean, VA 22T0I

June 1976

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE. MA 0r73f

20100827220

*l

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

WILLIAM R. PRICE, Captain, USAF
Techniques Engineering Division

THOMAS W. BAILEY, Lt CoYJ USAF
Chief, Computer Security Group

FOR THE COMMANDER

STANLEY PrDERESKA, Colonel, USAF
Deputy Director, Computer

Systems Engineering
Deputy for Command & Management Systems

SECURITY CLASS'FICATION OF THIS "AGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMOER |2. GOVT ACCFSSICN NO.

ESD-TR-76-35[, VoF. II

3. PECI°'FS'T"5 CATALOG NUMBER

4. TITLE (and Subtltla)

SECURE COMMUNICATIONS
PROCESSOR SPECIFICATION

5. TYFE OF REPORT 4 PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfs;

R. Broadbridge
J. Mekota

8. CON! RACT OR GRANT NUMBERfs)

FI9628-74-C-0205

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Honeywen Information Systems, Inc.
Federal Systems Division
7900 Westpark Drive, McLean, VA 22101

10 PPOGPAM ELEMENT. PROJECT. TASK
AP?A A WORK UNIT NUMBERS

CORL Item A004

11. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division
Hanscom AFB, MA 0[73r

12. REPORT DATE

June T976
13. NUMBER O^ PAGES

8 6 pages
14. MONITORING AGENCY NAME & ADDRESSC// different from Controlllnt Office) IS. SECURITY CLASS, (ol this report)

UNCLASSIFIED

15s. DECLASSIFICATION. DOWNGRADING
SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for PubTic Release; Distribution Unlimited.
•

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It necaaaary and Identify by block number)

Secure Communications Processor, Security Protection Module,
Descriptor Structure, Ring Structure, Memory Management,
I/O Mapping

20. ABSTRACT (Continue on reverse aide If neceaaary and Identity by block number)
A specification which establishes the performance, design, de-
velopment, and test requirements for a Secure Communications
Processor. A generic specification to be used is establishing
lower level functional specifications. Requirements for hard-
ware implementation of the functionality needed in an ADP system
to operate in a multilevel secure environment.

DD ,5 FORM
AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS P AGE(Whan Data Entarad)

SECURITY CLASSIFICATION OF THIS P AGE(Whan Datm Entarad)

PREFACE

This document presents the specification of the performance, design,
development, and test requirements for the Secure Communications
Processor. This document was prepared by Mr. Robert Broadbridge of
Honeywell Informations System, Inc.
Federal Systems Operations
7900 Westpark Drive
McLean, Virginia 22180

TASLE OF CONTENTS

1.0 Scope 4

1.1 Item Established 4
1.2 Approach 4
1.3 Conceptual Environment 4

2.0 Applicable Documents 7

3.0 Requirements 11

3.1 SPM Definition 11
3.1.1 SPM Functional Overview 11
3.1.2 SPM Interfaces 15
3.1.2.1 Processor to Memory Interface 15
3.1.2.1.1 Address Translation 15
3.1.2.1.2 Access Control 19
3.1.2.1.2.1 Effective Ring (Reff) 21
3.1.2.1.2.2 Argument Validation 22
3.1.2.1.3 Descriptors 23
3.1.2.1.3.1 Memory Descriptor 24
3.1.2.1.3.2 Descriptor Base Root 28
3.1.2.1.4 Descriptor Structure Dynamics 30
3.1.2.1.5 Fast Access Descriptor Store (FADS) 31
3.1.2.1.0 Cross Ring Movements 31
3.1.2.1.6.1 Call and Return 32
3.1.2.1.6.2 Trap and Trap Return 34
3.1.2.2 Device to Memory Interface 36
3.1.2.2.1 I/O Flow 3b
3.1.2.2.1.1 Premapped I/O Flow 37
3.1.2.2.1.2 Mapped I/O Flow 37
3.1.2.3 Processor to Device Interface 40
3.1.2.3.1 I/O Naming Structure 40
3.1.2.3.1.1 Explicit Names 43
3.1.2.3.1.2 Devices in Memory 43
3.1.2.3.2 I/O Descriptor 43
3.1.2.3.2.1 Explicit Names Descriptor 44
3.1.2.3.2.2 Devices as Memory Descriptor 47
3.1.2.3.3 I/O Initiation 48
3.1.2.3.3.1 Premapped Initiation 46
3.1.2.3.3.2 Mapped Initiation 49
3.1.2.4 Device to Processor Interface 50
3.1.2.4.1 Interrupt Structure 51
3.1.2.4.2 Interrupt Storage and Entry 51
3.1.2.5 Processor to Processor Interface 51
3.1.2.5.1 Maintenance of Descriptor Structure 51
3.1.2.5.2 General Interprocessor Signalling 52

3.1.2.6 Operator to Processor Interface 52
3.1.2.6.1 Standalone Bootstrap 52
3.1.2.6.2 Front End Bootstrap 54
3.1.3 Major Component List 54
3.1.4 Government Furnished Property List 55
3.1.5 Government Loaned Property List 55
3.2 Characteristics 55
3.2.1 Performance 55
3.2.1.1 Relative Performance 55
3.2.1.2 Data Cache 55
3.2.2 Physical Characteristics 56
3.2.3 Reliability 57
3.2.4 Maintainability 58
3.2.5 Environmental Conditions 58
3.3 Design and Construction 59
3.3.1 Materials Processes and Parts 59
3.3.2 Compromising Emanations Control (TEMPEST) and

Electromagnetic Compatibility 59
3.3.3 Nameplates and Product Marking 60
3.3.4 Workmanship 60
3.3.5 Interchangeability 60
3.3.6 System Safety 60
3.3.7 Human Engineering 61
3.4 Documentation 61
3.5 Logistics 61
3.6 Personnel and Training 61
3.6.1 Training 61
3.7 Major Component Characteristics 61
3.7.1 SPM 6 2
3.7.2 Processor 62
3.7.3 Memory 6 3
3.7.4 Controllers 63
3.a Precedence 64

4.0 Quality Assurance Provisions 65

4.1 General 65
4.1.1 Responsibility for Tests 65
4.1.2 Special Tests 65
4.2 Quality Conformance 65
4.2.1 Interface Definitions 66
4.2.2 Throughput 66
4.2.3 Physical Characteristics 66
4.2.4 Environmental Conditions 66

5.0 Preparation for Delivery 67

6.0 Notes 66

6.1 Descriptor Format and Field Encoding 68
6.2 Virtual Device Addresses 66
6.3 Virtual Address Pointers 69
6.4 Process/Event Reporting 71
b.5 Simple Indirect Descriptor 71
6.6 Page Descriptors 72
6.7 Physical Address Size and Precision 74
6.6 SPM Algorithmic Description 75

10.0 Appendix 66

10.1 Interconnection Unit 86
10.1.1 Intersystem Geometry 86
10.1.2 Internal Geometry 66
10.1.3 Interprocessor Communication 86

1.0 ScoDe — •

1.1 Item Established

This specification establishes the performance, design, development
and test requirement for the secure data communications system prime
item. This is a generic specification for use in establishing
requirements for specific functional specifications for individual
applications.

1.2 Approach

A secure communications system is achieved through the interconnection
of the elements of a commercial minicomputer system by a Security
Protection Module (3PM). The central position of the SPM is shown in
Figure 1. This document specifies the required properties of both the
SPM and the commercial units. Tne secure communications system shall
meet the hardware requirements stated in DoD 5200.23-M.

1.3 Conceptual Environment

While the Software concepts underlying the design of a security kernel
are beyond the scope of this document, a brief summary of some central
notions will facilitate the understanding of this document (ref.
section 2.0, Schiller).

A process is defined to consist of a collection of resources and a
state. The state of a process includes a single execution point. A
resource is available to a process only through a descriptor.

The resources of a process are subdivided into partitions. Each
partition defines a domain. The single execution point of the process
may be in any one domain. The domains of a process are well-ordered
oased on access privilege. This domain organization is termed a ring
structure (ref. section 2.0, Schroeder and Saltzer). When operating
within a ring, the process has access to the resources of that ring
and of all rings of less privilege. The most privileged ring (ring
zero, or innermost) will normally contain the security kernel,
although the kernel may be constructed to occupy more than one ring
(e.g., zero and one). Each process operating on a system will contain
the security kernel (distributed security kernel), so that a switch to
a security kernel function will occur within a process.

'-*•.'*•' !

/

V t M C R Y

\

/

CPJ

\

-I I-
I CONTROL.. ER

1 I

Figure 1. SPM Central Position

The access privilege of a process is controlled through a comparison
within the SPM of an effective ring number generated by the SPM during
address formation and pertinent access control fields contained in the
descriptor controlling access to the resource. A definition of the
access control rules is contained in sections 3.1.2.1.3.1, Memory
Descriptor, and 3.1.2.3.2, I/O Descriptor. A specification of how the
descriptor controlling access is found is contained in sections
3.1.2.1.1, Address Translation, and 3.1.2.3.1, I/O Naming Structure.

2.0 Applicable Documents

It is considered that the Secure Communications Processor will have
DOD tri-services applicability, and thus the prime governing
specification for communications with its respective latest revision
and class will be one of the following:

MIL-E-4158E

MIL-E-1640Q

MIL-E-21200

MIL-E-5400

Class 1,2 & 3

Class 3 & 4

Class 2 & 3

Class 1

General Requirements for Ground
Electronic Equipment

General Specification for Electronic
Equipment, Ship and Shore

General Specification for Control
Systems Electronic Test Equipment

General Specification for Aircraft
Electronic Equipment

In addition, the following related disciplinary standards and
specifications are representative of minimal requirements:

Military Specifications

MIL-P-9U42G o Jun 72

NIL-M-7793D 31 Dec 69

MIL-E-5087B 15 Oct fa4

MIL-C-38999C 31 Jan 72

MIL-C-8872313 21 Dec 73

MIL-E-8189G 2 Jul 73

MIL-H-46855A 2 May 72

Packaging, Handling, and
Transportability in system/equipment
acquisition.

Meter, Time Totalizing

Bonding, Electrical and Lightning
Protection for Aerospace Systems

Connector, Electrical, Circular,
Miniature; High density quick
disconnect

Connector, Electrical Circular,
Environment resisting

Electronic Equipment, Missiles,
Boosters, Allied Vehicles

Human Engineering Requirements for
Military Systems, Equipment and
Facilities

MIL-C-1472E 31 Dec 74

HIL-Standards

Human Engineering Design Criteria for
Military Systems, Equipment and
Facilities

MIL-STD-186-100 15 Nov 72

MIL-STD-260A 7 Jul 69

MIL-STD-4540 31 Aug 73

MIL-STD-461A 1 Aug 68

& Chg. LNotice 3 1 May 70

MIL-STD-462 31 Jul 67

& Chg. Notice 1 1 May 70

MIL-STD-883 1 May 68

MIL-STD-4 7 0 21 Mar 66

MIL-STD-471A 27 Mar 73

MIL-5TD-483(USAF) 31 Dec 70

MIL-STD-490 1 Feb 69

MIL-STD-756A 15 May 63

MIL-STD-781B 15 Nov 67

Common Long Haul and Tactical
Comm. Sys. Tech. Std.

Definitions of It<;m Levels, Item
Exchangeability, Models and Related
Te r ms

Standard, General Requirements for
Electronic Equipment

Electromagnetic Interference
Characteristics, Requirements for
Equipment

Electromagnetic Interference
Characteristics, Measurement of

Test Methods and Procedures for
Micro-Electron ics

Maintainability Program Requirements
for Sys & Equipments

Maintainability/Ver ification
Demonstration/Evaluation

Configuration management practices
for systems, equipment, munitions,
and computer programming.

Military standard specification
practices.

Reliability Prediction

Reliability Tests, Exponential
Distribution

MIL-STD-810B 15 Jun 67

& Chg Notice 1 20 Oct 69

MIL-STD-1130 12 Nov 68

MIL-STD-1472A 15 hay 70

MIL-STD-1521 1 Sep 72

i«HL-STD-3100.35G 15 Oct 68

MIL-Q-9850A ID Dec 63

Manuals

DoD 5 2U0.28 - M 2 Jan 73

Handbooks

MIL-HDBK-217B 20 Sep 74

MIL-HDBK-232(C) 14 Nov 72

AFSC Design
Handbook 1-3

NSA Documents

NACSEM 5100(C)

NACSEM 5200(S)

1 Jan 72

Get 70

Environmental Test Methods

Connections, Electrical Solderless
Wrapped

Human Eng. Design Criteria for
Military

Technical Reviews and Audits for
Systems, Equioment and Computer
Programs Systems, Equipment and
Facilities

Integrated Logistics Requirements
Planning Guide for DoD Systems and
Equipment

Quality Program Requirements

Techniques and procedures for
implementation, deactivation,
testing, and evaluation of secure
resource sharing ADP systems.

Reliability Stress & Failure Rate
Data for Electronic Equipment

DCS Red/Black Engineering and
Installation Guidelines (U)

Personnel Subsystems

Compromising Emanations Laboratory
Test Standard Electromagnetic (U)

Compromising Emanations Design
Handbook (U)

AF Corarasec Publications

AFNAG-5B (C) Mar 74

AFNAG-9A (C) 14 Apr 72

Army_

DDC AD61966b

DDC ADbl9667

QASA

DASA 2028

OTHER

AFR 300-8

1 Aug t>4

1 Aug 64

3 Jan 74

DIA-M-50-4A(C) 14 Jan 75

Schiller, W. L. Mar 75

Schroeder, M. D.
& Saltzer, J. H.

Mar 72

Honeywell, AG95 Jun 72

Red and Black Engineering and
Installation Criterions

Using NACSEM Documents and TEMPEST
Emanation Limits (U)

Interference Reduction Guide for
Design Eng Vol. 1

Interference Reduction Guide for
Design Eng Vol 2

Tree Preferred Procedures

Security Requirements for Automatic
Data Processing Systems (ADPS)

Security of Conpartmental Computer
Operations

The Design and Specification of a
Security Kernel for the PDP-11/45,
MTR-2934, MITRE Corporation,
Bedford, MA.

"A Hardware Architecture for
Implementing Protection Rings",
Communications of the ACM 15(3), pp,
157-173.

The Multics Vir tual Memory

10

3.0 Requirements

3.1 SPM Definition

3.1.1 SPM Functional Overview

The function of an SPM is to mediate, through a descriptor structure,
all interactions between elements of a protected minicomputer. The
logical structure that the introduction of an SPM imposes on the
protected minicomputer is diagrammed in Figure 2. An SPM is
intimately associated (for purposes of SPM control) with each
processor of the system. Through its SPM, each processor may
communicate with the other processors, I/O devices, and memory. An
I/O device communicates to memory through an SPM. Thus, each SPM may
be thought of as an address translation resource for a number of
requesters, the requesters being the attached processors and I/O
devices. The address translation operation is the conversion of
virtual addresses presented by the requesters, via the descriptor
structure, to absolute resource addresses (using information contained
in the descriptors).

Each SPM logically contains the mechanism diagrammed in Figure 3. It
contains the following functions:

1) the current protection state (current and effective ring) of each
requester it services;

2) a pointer (Descriptor 3ase Root) to the set of descriptors which
describe the accessible resources for each requester;

3) a mechanism by which the protection state and set of resource
descriptors may be initialized for each requester: this mechanism
is generally under the control of the associated processor;

4) a mechanism by which the SPM may search through the descriptor
structure to locate the proper descriptor applying to a requested
resource;

5) a mechanism by which the SPM may evaluate the propriety of a
requested access based on the following information: the identity
of the requester, the access mode of the request, the resource
requested, the current protection state of the SPM for the
requester, and the requester's descriptor for the resource;

11

I IA - 48,149

Figure 2. General System Structure

12

I * - *• , l(«

f

1

1 J
1

CURRENT | EFFECTIVE

RING, RING,

\
CONTROL \

 •
CURRENT ! EFFECTIVE

PiSG . RING. *EOUESTEK 10
f CHECKED,

MAPPER

c
(

ABSOLUT'. AOOHESS

VIRTUAL A00RESS

1
I

1
L

'
DESCRIPTOR BASE RCOT,

\
•
•
•

t
OESCRiPTCR 3ASE ROOT.

FAST ACCESS

DESCRIPTOR

STORE

i
1 DATA '•

•

/

/ 1k

PREMAPPEC-

«H 10 CnECKER V

DATA IN OATA OjT

Figure 3. SPM Function

13

6) a mechanism by which the protection state of a requester may be
changed, in a well-defined manner; and

7) a Fast Access Descriptor Store (FADS) in which the SPM may place
fast access copies of recently referenced descriptors.

Tne SPM shall have sufficient protected storage to remember the
protection state and descriptor set of each of the requesters
(processors and I/O devices) that it services. In Figure 3 the number
of requesters for a specific SPM is designated by n.

The SPM shall mediate each request by a processor to:

1) reference memory; and

2) initiate an I/O operation.

The SPM shall mediate each request by an I/O device to reference
memory.

Most minicomputer systems utilize a bus architecture to transmit
information between elements of the system. Thus, for an SPM
implementation for such systems, the information flows of Figure 2
will occur on one or more busses.

The above discussion assumes that each memory request, by an I/O
device, is actively mediated by the SPM. Due to performance
difficulties imposed by the bus architecture of most minicomputers,
the SPM's active mediation may cause an unacceptable performance loss
(particularly in high I/O bandwidth applications). Thus an
alternative form of I/O mediation is specified in this document. This
architecture, termed premapped I/O, imposes substantially more
responsibility and complexity on the controlling system software.
Thus its use in secure systems must be carefully considered.
Premapped I/O mediation imposes a "one-time" check of the propriety of
an I/O device's memory requests. This checking, equivalent to the
dynamic checking discussed above, is performed at I/O initiation time.
The virtual memory address and extent to or from which the I/O device
is to transfer data, is transmitted to the SPM which interprets the
addresses in the descriptor structure of the requesting process.
These addresses, if valid, are then translated into absolute addresses
and transmitted to the device. The device must be guaranteed not to
modify the addresses passed to it. The SPM must, guarantee that the
processor does not modify the set of descriptors used in the
translation until the completion of the I/O operation. If an SPM
supports premapped I/O it shall contain a premapped I/O checker that
shall validate and translate addresses passed to devices with respect
to the descriptors of the process initiating the I/O operation.

14

3.1.2 SPM Interfaces

The SPM enforces security through mediation of all communication
between the non-secure hardware components. The interfaces are:

processor to memory
device to memory
processor to device
device to processor
processor to processor

3.1.2.1 Processor to Memory Interface

3.1.2.1.1 Address Translation

The SPM shall mediate all processor to memory references. When the
processor makes a memory reference, the memory address presented on
the bus is intercepted by the SPM and is treated as a virtual address.
The SPM translates this virtual address into a physical memory address
through a series of lookups in descriptor tables resident in memory.
The physical address is then presented to memory, and the appropriate
read or write access is made. The data going to or from memory is not
examined by the 3PM.

Each memory descriptor in the descriptor tables contains, among
various control fields (see section 3.1.2.1.3.1), a pointer to an
absolute memory location (i.e., a physical memory address). There are
several types of descriptors, as designated by particular encodings in
the descriptor control fields. If the descriptor is indirect, the
descriptor's pointer is the address of another descriptor table. If
the descriptor is direct, the object described is either an area of
memory or an I/O device. If an area of memory, the descriptor's
pointer is the address of a area (page or segment) of data to be
referenced. This section will discuss in detail indirect descriptors
and direct memory descriptors. See 3.1.2.3.2 for a discussion of I/O
descriptors.

The virtual address presented oy the processor can, in the general
case, be considered to consist of four fields, designated a,b,c,d, as
shown at the top of Figure 4. There are several ways in which a
virtual address can be translated into a physical address, depending
on the types of descriptors encountered. The steps below, as
illustrated in the figure, describe the procedure by which a virtual
address shall be translated for the specific case of two levels of
indirect descriDtors and a third level of direct descriptor.

15

VIRTUAL ADDRESS

DBR INDIRECT

©

LEVEL I
(PAGE TABLE FOR

DESCRIPTOR
SEGMENT)

PAGE DESCRIPTOR
INDIRECT

LEVEL 2
(PAGE OF

DESCRIPTOR
SEGMENT)

SEGMENT DESCRIPTOR
INDIRECT

LEVEL 3
(PAGE TABLE
FOR SEGMENT)

PAGE DESCRIPTOR
CIRECT

IB

<
Figure 4. Address Translation

16

(1) The SPM, given a virtual address, makes its first reference to
the first level descriptor table pointed to by the descriptor
base root (DBR) known to the SPM (see 3.1.2.1.3.2 for a
discussion of the DBR). It is assumed that the T field of the
DBR specifies an indirect DBR.

(2) The offset into this descriptor table is the first field of the
virtual address (a), and the descriptor at that location is
referenced.

(3) If the descriptor is an indirect descriptor, the pointer in that
descriptor is used to access a second descriptor table, and the
second part of the virtual address (b) is used as an offset into
this second table.

(4) If the second level descriptor is indirect, it similarly is used
to access a third descriptor table and the third part of the
virtual address (c) is used to get the third level descriptor.

(5) The third level descriptor must be a direct descriptor. Its
pointer is used to find the page of data, and the last part of
the virtual address (d) is an offset into the page to obtain the
actual word being referenced.

The above steps describe the address translation in the case where the
DBR is indirect and the descriptors in the first two levels are
indirect. If either the first or second level descriptors are direct,
their respective pointers shall be used to directly access the defined
area of data, and the unused parts of the virtual address (either
fields b,c,d or c,d) shall be combined to form the offset into the
defined area.

The three-level descriptor system is the most general in that it
allows for the implementation of segments, pages, and paged descriptor
segments. The first descriptor table can be considered to be the page
table of the descriptor segment, the second table is a page of the
descriptor segment, and the third table is the page table for the
segment. The indirect descriptors in the descriptor segment are
called segment descriptors and the direct descriptors in the page
tables are called page descriptors. The terms segment, page, and
descriptor segment will be used in this specification to refer to the
appropriate level descriptors and pages. It is not the intention,
however, to preclude some other use or structuring of descriptors.
The only requirement is that the address translation mechanism perform
as specified.

A process's view of memory is that of a series of segments, each
identified by a segment number (composed of fields a,b combined).

17

Within each segment there is a word offset (composed of fields c,d).
Since each segment may not be the maximum size, there will be "holes"
in the virtual address space for high values of the word offset (c,d)
for some segments. Within a segment, however, all values of the word
offset from 0 to the current size of the segment are usually defined.
(The "end" of a segment is the offset corresponding to the last word
of the last page of the segment as defined by the page table size
contained in the segment descriptor. An "undefined" offset in a
segment that occurs before the end of the segment is one that
corresponds to a location in that segment for which there is no page
descriptor in the page table. A "missing" page descriptor in a page
taole must be marked by software using the directed trap (DT) field in
the descriptor, so that the SPM will not attempt to continue address
translation using the contents of that descriptor. Though there may
be little real use for having undefined offsets before the end of a
segment, this specification does not require all page descriptors in a
segment to point to valid memory addresses as long as the DT field is
appropriately marked.)

Depending on the system software structure, the user can in general
ignore the fact that segments and descriptor segments are paged.
Thus, the breakdown of segment number and word offset into separate
fields is of no concern. Only the lowest level software, i.e. the
kernel, need be aware of paging. It is of course required that the
kernel be in complete control of all descriptors..

In a multiprocessing environment, each process usually has its own
virtual address space as characterized by its descriptor segment. In
such an environment, and particularly in a communications processor
where many processes have common data bases, it is essential that
sharing of segments between processes be supported. When a segment is
shared oetween processes, there is no inherent requirement that the
segment have the same segment number for each active process that
currently has access to the segment. Thus, the segment number portion
of a given virtual address only has meaning from within the process
using the descriptor segment to which the virtual address applies.
However, the word offset portion of the address of a particular word
in a segment is the same for every process that accesses the same word
in the segment. This means a segment's page table can be shared among
all processes currently accessing the segment. In fact, memory
management in a demand paging environment is greatly simplified if the
page descriptors (i.e., those that describe the actual physical
resource) are shared (ref. section 2.0, The Multics Virtual Memory).
The requirement for sharing of direct descriptors in different virtual
address spaces is important because it dictates the manner in which
access control is interpreted (see 3.1.2.1.2).

18

One f
to al
is de
than
segme
paged
acces
5).
descr
into
OSR i

inal variat
low unpaged
termined th
one page, o
nts, it is

Th is me a
sed by tne
In this cas
iptor table
this table,
nterpretati

ion on the address interpretation
descriptor segments. If, in a gi

at a process's descriptor segment
r that it is not necessary to page
useful to specify that the descrip
ns that the segment descriptor mus
offset specified in the combined a
e, the DBR shall point directly to
, and the combined a,b field shall
The T field in the DBR shall spe

on (see 3.1.2.1.3.2) .

shall be implemented
ven application, it
will be no greater
descriptor
tor segment is not
t be directly
,b field (see Figure
the second level
be used to index
cify this form of

The number of
depends on the
and usable vir
size of the co
can only acces
applications,
end of each se
space. The us
hand, may degr
required for s
relative sizes
management, an
control (see n
protection.

bits in
particu
tual add
mbined a
s a s ma 1
this may
gment, r
e of a 1
ade syst
egment d
of the

d the se
ext sect

each of the four
lar application,
ress space are a
,b field is smal
1 number of larg
leave a large a

esulting in insu
arge number of s
em performance d
escriptors that
c and d fields a
gment size affec
ion) in terms of

fields of the virtual address
since page size, segment size,

ffected. For example, if the
1, and c,d is large, a process
e segments. For some
mount of unusable space at the
fficient usable virtual address
mall segments, on the other
ue to the large amount of memory
can't be shared. Generally, the
ffect paging overhead and memory
ts the granularity of access
the size of the atomic unit of

Though the field sizes cannot be exactly specified, there are certain
restrictions in the relative field sizes that are required to simplify
interpretation. For example, the size of the a,b field should be no
larger than c,d — otherwise it would be very difficult to access the
descriptor segment itself as a segment. The decision as to how to
divide the fields shall be justified with respect to the particular
application.

3.1.2.1.2 Access Control

In addition to performing the function of address translation, the SPM
shall verify that the process has the required access to the memory
location referenced. Access to a memory location is defined to be in
one of the three modes: read (R), write (W), or execute (E). Read
refers to a data or address constant fetch from memory, write is a
store into memory, and execute is an instruction fetch from memory.
There is a set of three ring brackets (Rl, R2, R3) that are also used
to determine the type of access allowed. The ring brackets restrict
the process to certain types of access when executing in a given
domain, or ring. Each memory descriptor shall be capable of

19

LEVEL 2

(DESCRIPTOR
SEGMENT)

LEVEL 3
(PAGE TABLE
FOR SEGMENT-

VIRTUAL ADDRESS

H*—SEGMENT mim OFFSET—^

DBR (DIRECT)

JL
^

SEGMENT DESCRIPTOR
INDIRECT

1
I. i
1

(PAGE DESCRIPTOR
DIRECT

_j 1

PAGE OF

SEGMENT
WORD OF DATA

"^

Figure 5. Unpaged Descriptor Segment

20

containing the access permission and ring bracket information that is
to apply to the location referenced. During the address translation
phase, the access control information in the appropriate descriptor is
used to calculate the final effective access mode to the location in
memory. The effective mode is compared to the desired access mode,
and an access violation trap shall be signalled by the SPM if the
required access is not allowed by the effective mode.

There are specific cases, however, such as the use of unpaged or
unshared segments, in which it is convenient to place the access
control information in direct descriptors. Thus, in order to support
full generality, the SPM shall be prepared to accept access control
information from any descriptor encountered during address
translation. The A field in the descriptor shall specify that the
access control information it contains is to be applied to the memory
reference. It is the responsibility of the security kernel to
properly set the access control bits in each descriptor.

3.1.2.1.2.1 Effective Ring (JReff)

The actual effective access to a location in memory shall be
determined by comparing a calculated effective ring number, Reff, to
the three ring brackets associated with a descriptor for that memory
reference, and then factoring in the three access permission bits.
See 3.1.2.1.3.1 for a description of the exact algorithm used to
calculate the effective mode.

For the simple memory reference, the value of Reff used in this
determination is the current ring number (Rcur) maintained by the SPM.
More discussion on the use of Rcur can be found in 3.1.2.1.0. In the
general case, however, as part of the address preparation cycle, tne
processor may make one or more memory references to fetch indirect
addresses (address constants) before operand fetch. (ThG fetch of an
address constant from memory is subject to the same access control and

21

address translation as a simple read access to data.) If an address
constant is contained in a segment that can be written from a higher
ring than Rcur, as is the case when an inner ring procedure is
referencing arguments through an indirect address passed to it from an
outer ring, the ultimate location referenced by the address constant
must be subject to access control defined by the ring of the segment
in which the address constant resides, rather than Rcur. If the
address constant were only subject to Rcur restrictions, the inner
ring procedure would, in software, have to verify that the Bddress
constant pointed to a segment to which the outer ring had access. In
order to eliminate the need for software validation of arguments, the
5PM shall validate indirect references with respect to the ring of the
segment in which the address constant resides.

The SPM shall accomplish the automatic address validation by keeping
track, in terms of Reff, the maximum value of the ring number Rl in
all descriptors encountered during address preparation. The value of
Reff shall be initialized to Rcur at the beginning of each instruction
cycle and shall apply to the instruction fetch and all references
until the next instruction fetch. For each descriptor encountered
between instruction fetch and operand fetch, a new value of Reff shall
be computed as the maximum of the current Reff and Rl in the
descriptor and this new Reff shall apply to the fetch of subsequent
indirect addresses or data. It can be seen from this scheme that Reff
can only increase from its initial value of Rcur. In addition, if the
processor allows more than one level of indirection, subsequent
indirect address fetches are subject to the constantly increasing
value of Reff.

3.1.2.1.2.2 Argument Validation

One specific problem involving argument validation is solved by the
use of Reff as discussed in the previous section. On a system with
multiple levels of address indirection, the Reff mechanism properly
checks argument validity as long as the addresses in the indirection
chain are left in memory segments where they originated. On
processors that achieve the addressing effects of multiple indirection
through the software loading of successive links of an indirect chain
into internal registers, the loading of each link shall generate an
indication of the results of the Reff check applied to the entire
remaining chain.

A more general problem is that, if the argument pointer is copied from
an outer ring to the current inner ring, the automatic Raff type of
validation performed by the SPM has no effect, since now the address
constant resides in the current ring. Inner ring procedures must be
able to copy argument pointers to their own ring] and they must be

22

able to indirect through these pointers without having to check, in
software, that these pointers will do no harm. Therefore the SPM
shall provide a mechanism whereby software running in a given ring can
force the validation of a reference to an arbitrary virtual address
with respect to any higher ring number. Two methods for accomplishing
this validation are proposed below, though this specification does not
preclude other implementations that satisfy the argument validation
requirement.

The most convenient solution to this problem from the software point
of view is to store a ring number along with the pointer at the time
it is copied, which would be the value of Reff computed as if the
pointer were referenced directly. On subsequent indirect references
through this copied pointer, the SPM would use the ring number in the
pointer as another factor in computing Reff.
th'
L!
a:
c<

If there are insufficient unused bits in the indirect address to store
a ring number, the SPM shall provide, as a minimum, a method whereby a
given indirect address fetch be subject to an initial software
specified value of Reff. For example, software could load the initial
value of Reff into some register, and two special orders (a load and a
store) could be recognized by the SPM to perform the normal load and
store function, but with an initial value of Reff taken from this
register rather than from Rcur. This latter approach limits
programming generality because it requires the subroutine using an
address to know when an address could possibly have originated in an
outer ring. However, any approach allowing software to specify the
initial Reff for indirect addresses is acceptable.

3.1.2.1.3 Descriptors

Every resource that is allocated to a process shall be represented by
descriptors. Descriptors are constructed by the security kernel and
are structured in memory for use by the SPM. The descriptor structure
is the prime data base for the state of allocation of the system
resources. Copies of descriptors in use in the SPM are only valid if
they reflect the memory originals. This section will specify the
format and semantics of a memory descriptor and a Descriptor 3ase

23

Root. I/O descriptors are specified in section 3.1.2.3.2, I/O
Descriptors.

3.1.2.1.3.1 Memory Descriptor

The logical format of the memory descriptor recognized by the 3PH is
diagrammed in Figure 6. This section specifies the information
required to be contained in a descriptor. The intent of this section
is not to precisely specify a particular implementation. However,
every implementation shall provide, in some manner, the required
descriptor information. Each piece of required information is
identified and its purpose and semantics specified.

Descriptor type: The T field identifies the type of the
descriptor. It shall have sufficient size to identify each type
of descriptor supported by a particular 5PM implementation. As a
minimum it shall identify three types of descriptor: an indirect
descriptor that describes an array of descriptors; a direct
memory descriptor which directly describes an array of memory
locations; and a direct I/O device descriptor which directly
descrioes an I/O device.

Directed traps: The DT field of the descriptor provides for
software directed hardware traps. At least four ^values of this
field must be provided. One value describes a normal descriptor
that does not cause a trap. The three other values cause traps.
It shall be possible for the system to distinguish between page
not in memory (page fault), missing segment or segment not in
memory (segment fault), and descriptor segment page fault.

Access control: Three pieces of information are defined: the A
field, the Ring Brackets, and Permissions. The A (Access) field
determines whether the access control fields of the descriptor
are to be used to control access to all resources described by
the descriptor (regardless of the number of subsequent levels of
address translation). Two values must be provided: if the A
field is ON then this descriptor's access control fields apply,
if OFF, either an inferior or superior descriptor must provide
the necessary access control. If more than one descriptor is
encountered, during address translation, with the A field ON, the
first descriptor (defining the largest resource) with the A field
ON defines the appropriate access control. Of course, at least
one descriptor with the A field on must be found.

The Rl, R2, and R3 fields define the privilege rings. Each field
shall contain at least three values (integers: 0,1,2) so that the
system supports at least three rings of access privilege. The

24

,_
u
o H

_l
t_>

mi

<
a.

o

< 2
in
3

3

o
*

I
Z
r fO

u •x.

in rw
tfl Ot
(J

< I !
<? j

H
o

c

u
c

M
u
w
u

C

>.

§ -

25

interpretation of these fields is described below. It is the
responsibility of the software to ensure that Rl<R2<R3.

The Read, Write, and Execute (R, E, and W) fields define allowed
nodes of access to the described resource. Each field must have
two values (ON and OFF): if ON the respective mode of access is
allowed, if OFF the respective mode of access shall be denied.

The following rules specify the required interpretation of the
above access control information. The item Reff is the effective
ring number computed by the 3PM during effective address
formation (ref. section 3.1.2.1.2.1, Effective Ring).

1) Write permission if and only if (W = ON) and (Reff < Rl);

2) For any resource other tnan the resource that is the source
of the request, read permission if and only if (R = ON) and
(Reff < R2) (The source of the request is defined as the
resource to which the program counter points and from whose
descriptor the access control information, for the current
access, was obtained, i.e., the descriptor whose A field was
on.);

3) For the resource that is the source of the request (e.g.,
address and data constants embedded in procedures): Read
permission if and only if (R = ON or E = ON) and
(Reff < R2). This rule is a desirable extension of rule 2.
In an Implementation where software considerations do not
allow the Read (R) bit to be OFF when the Execute bit (E)
is ON, this extension may be omitted;

4) Execute permission if and only if (E = Oi^i) and
(Rl < Reff < R2) ; and

5) The use of R3 and the precise rules for entry/return to/from
a procedure resource are specified in section 3.1.2.1.6,
Cross Ring Movement. In qeneral, Call permission if and
only if (E = ON) and (Rl < Reff < R3) .

Certain sequences of ring numbers are termed brackets to denote a
range of allowed rings in which certain modes of access are
possible. The term write bracket shall apply to rings 0 to Rl
inclusive. The term read bracket shall apply to rings 0 to R2
inclusive. The term execute bracket shall apply to rings Rl to
R2 inclusive. The term call bracket shall apply to rings Rl to
R3 inclusive.

26

Usage: The U, M, and C fields record and linit the usage of the
described resource. The U field has two values (ON and OFF): if OFF
and the resource is successfully accessed (in any mode: read, write,
or execute) the SPH shall update the value to ON. The M field has two
values (ON and OFF): if OFF and the resource is successfully accessed
in write mode the SPM shall update the value to ON. The C field
controls the entry of elements of the described resource into a data
cache (if such a cache is supported by the system). It has two values
(ON and OFF): if ON the described resource may enter the cache, if OFF
the resource shall not be placed in cache storage. This field is
specified to ensure consistent copies of shared read/write resources
in multiprocessor systems (for example, resources composed of
descriptors). This field need not be included if the cache technology
used in a particular system ensures the consistency of the resource
with the cache copy in a multiprocessor environment.

Location: The PA field supplies the physical address of the base (in
memory) of the resource described. The PA field shall have sufficient
size to address all physical memory that the system may support. The
PA field shall have sufficient precision to address memory resources
(particularly small arrays of descriptors) without waste of physical
address space. The choice of the size of the PA field shall be
justified in eacn implementation.

Limit: The L field defines the size of the defined resource. An
access request having an offset greater than the value of the L field
of any descriptor encountered during address formation shall cause the
SPM to generate a trap. The L field shall have sufficient size to
specify the maximum size of a resource as determined by its offset
(ref. section 3.1.2.1.1, Address Translation). The L field shall have
sufficient precision to specify resource sizes that; do not waste
physical memory. The choice of the size of the L field shall be
justified in each implementation.

Call limiter: The CL field defines the number of entry points within
the described resource for use by the call order (ref. section
3.1.2.1.5, Cross Ring Movements). The CL field defines the maximum
offset, within the resource, that may be addressed using a call order.
A call order addressing an element within the resource with an offset
greater than the CL field snail cause the SPM to generate a trao. The
size of the CL field shall be large enough to define sufficient entry
points to minimize software interpretation of cross ring transfers
(call orders). It is suggested that the CL field allow for at least
b4 entry points.

In some implementations software considerations or hardware properties
may make it desirable to include some other form of the call limiting
function. The call limiting function snail always be implemented, and

27

any departure from the inclusion of a call delimiter field in a
descriptor must be justified.

Concurrent access: The IOCT field of direct memory descriptors shall
be incremented by the SPM at each initiation of an I/O operation
in/out of the described resource. This field is intended to be used
by system software to determine the existence of I/O operations in
progress within a resource. This information shall then be used, by
system software, to keep the resource in memory until all outstanding
I/O has completed.

If the requested mode of access, for a resource, is not permitted by
the access control information, the SPM shall generate a trap.

The interpretation of descriptor fields is dependent on the descriptor
level (ref. section 3.1.2.1.1, Address Translation). The T, DT, C,
PA, and L fields are applicable for each level of descriptor. The
IOCT, U, and M fields are referenced and updated only for direct
descriptors. The access control fields Rl, R2, R3, R, E, and W are
only applicable for a descriptor which has the A field Ori.

3.1.2.1.3.2 Descriptor Base Root

A special form of descriptor is recognized by the SPM. This
descriptor is called the Descriptor Base Root, (DBR) and is diagrammed
in Figure 7. It is used by the SPM to establish the set of
descriptors for a process. The DBR is a construct similar in format
to a memory descriptor. It describes where (in physical memory) and
how to find the descriptors defining the resources accessible to the
currently executing process. The DBR shall describe both the set of
I/O device descriptors and memory descriptors accessible to a process.
There are two alternative methods by which the I/O and memory
descriptors may be structured. The first structure defines distinct
name spaces for I/O devices and memory both rooted in a process's DBR.
A name designated as an I/O device name will be interpreted in the I/O
device descriptor name space; a name designated as a memory address
will be interpreted in the memory descriptor name space. This
structure requires the DBR to have two components: the first describes
the set of memory descriptors, the second,describes the set of I/O
device descriptors. The second structure interprets both I/O device
names and memory addresses in the same name space of descriptors. The
DBR for this alternative has only one component describing all
descriptors for both I/O devices and memory. If the sizes of the
virtual memory space and the virtual device space (generated by the
processor) are different, the SPM shall manipulate the smaller virtual
address so that both memory and device direct descriptors may be
conveniently accessed. The interpretation of each component of the

28

S
c

ad
sa

M

so

29

DBR by the 3PM shall be:

Location: The PA field provides the physical memory address of
' the tree of descriptors describing the resources of a process.
It shall have sufficient size to address all of physical memory
so that descriptors may be placed anywhere in physical memory.
It shall have sufficient precision to address the smallest
resource (a single descriptor) without waste of physical memory.
The choice of the size of the PA.field shall be justified in each
implementation.

Limit: The L field defines the size of the described resource.
It shall have sufficient size to accomodate the maximum number of
descriptors, determined by the chosen size and interpretation of
the virtual address (ref. section 3.1.2.1.1, Address
Translation). It shall have sufficient precision to accomodate
the minimum number of descriptors (one) without waste of physical
memory space. The choice of the size of the L field shall be
justified in each implementation.

Type: The T field defines the type of the DBR. It has at least
two values: direct and indirect. A direct DBR type indicates
that the DBR describes an array of segment descriptors (ref.
3".1.2.1.1, Address Translation). Note that either segment or
page descriptors may directly describe a resource. The resource
described may either be memory (via a direct descriptor) or an
I/O device (via a device descriptor; ref. 3.1.2.3.2, I/O
Descriptors).

If the distinct I/O device and memory descriptor structure is
implemented, the DBR shall contain two components, each with the above
format: one component describing the set of I/O device descriptors,
the other describing the set of memory descriptors. An indirect DBR
type indicates that the DBR describes an array of descriptors, each of
which describes an array of segment descriptors.

3.1.2.1.4 Descriptor Structure Dynamics

30

descriptor structure in memory are reflected in the fast access
copies. The SPM shall provide a function to the processor by which
outdated copies of descriptors may be cleared from the fast access
store under kernel software control. It shall be a hardware
responsibility to ensure that any changes made, by the SPM, to fast
access copies of descriptors are promptly and unambiguously reflected
into the memory originals.

3.1.2.1.5 Fast Access Descriptor Store (FADS)

The SPM shall have a fast access store to retain recently used
descriptors in order to meet and exceed the performance constraints of
section 3.2.1.1, Relative Performance. This specification does not
constrain the specific organization and technology used in an
implementation of a fast access descriptor store. However, every
implementation shall have the following properties:

1) descriptors in the FADS shall have copies of the access control
information contained in the descriptor that controls access to
the resource described by the FADS retained descriptor (e.g., a
page descriptor in the FADS must contain a copy of the access
control information obtained from its immediately superior
segment descriptor)

2) a Clear Fast Access Store (CFAS) function shall be provided which
will clear the FADS of descriptors; and

3) changes made to the descriptors in the FADS by the SPM
(particularly to the U, M, and IOCT fields) shall be promptly and
unambiguously reflected into the memory originals.

3.1.2.1.5 Cross Ring Movements

The SPM shall maintain a current ring number (Rcur) at which the
processor is running. This ring number is used in the calculation of
the effective ring number (Reff) associated with a particular
reference to memory that is compared to the ring brackets (Rl, R2, and
R3) of the referenced segment. Ring changes are initiated at the
request of a process using the call and return instructions, or
automatically by a trap or interrupt. This section discusses the
call, return, and trap requirements. Interrupts are discussed in
3.1.2.4.1.

31

3.1.2.1.6.1 Call and Return

Two processor orders that shall be recognized by the SPM are the call
and return orders. The call order is very similar to a transfer
except that the the SPM can change the current ring number to a lower
value. The return is also a transfer with a possible increase in the
current ring number. Calls are normally used to transfer to inner
ring procedures to accomplish more privileged operations than those
allowed at the current ring, and returns are used to return from an
inner ring procedure back to the outer ring from which the call
originated.

Access checking on the operand of the call instruction is somewhat
different from that of other instructions. The operand of a normal
transfer instruction need not be accessed until the next instruction
fetch cycle, and thus access to the operand may not be required or
checked until the program counter is loaded with the new virtual
address generated by the transfer instruction. Since the call
instruction can change Rcur to a lower number and thus put the
processor in a more, privileged state, the SPM must guarantee that
entry into the inner ring is tightly and completely controlled by that
inner ring. This means that the SPM must check that calls can only be
made to specific locations within specific procedures belonging to the
inner ring.

The mechanism that accomplishes this control shall perform as follows.
an inner ring procedure tnat is callable from an outer ring is defined
as a "gate" by specifying in the ring orackets of the descriptor for
the procedure segment a value of R3 tnat is different from R2.
formally, transfers to a segment cannot be made from rings above R2.
However, a call instruction is allowed to a procedure if the call is
made from a ring less than or equal to R3. If such a call is made,
the new value of Rcur becomes R2, and execution continues. The value
of Reff after address preparation for the call instruction is used in
the comparison with R2 and R3. The tests made in the call are as
follows:

Reff > R3 • entry denied, trap (outside call
bracket)

R2 < Reff < R3 entry allowed, R2 becomes Rcur

Rl < Reff < R2 entry allowed, Rcur unchanged

Reff < Rl entry denied, trap (outside call
bracket)

32

The checks on call shall not preclude using the call instruction to
transfer to a procedure from within its execute bracket. Nor shall
be required that a segment be a gate (i.e., R2 < K3) in order to be
called from within its execute bracket. Thus, the call bracket is
defined as Rl to R3, with R2 being the new ring of execution if the
segment is a gate and the call is from outside R2.

it

It is not
There must
gate segme
the call 1
through tn
functional
limiter fi
within the
is a gate,
segment mu
must be pr
during the
of the vir
before cha

suffic
also

nt are
imi ter
e use
ity ju
eld is
segme
a cer

st be
epared
acces
tual a
nging

ient to s
be a mech
valid en
field (3

of the ca
stified f
used, th

nt to whi
tain numb
reserved
to accep

s check d
ddress is
the ring

imply specify w
anism for speci
try points. As
.1.2.1.3.1), th
11 limiter fiel
or a particular
e call limiter
ch a call can t
er of locations
for entry point
t entry at any
iscussed above,
no greater tha

of execution.

hich segments are gates,
fying which locations in the
noted in the description of

is function can be achieved
d or' through equivalent
implementation. If the call

specifies the maximum offset
ransfer. Thus, if a segment
at the beginning of the

s, and the called procedure
of these locations. The SPM,
shall verify that the offset

n the call limiter field

In the gener
consist of a
transfer to
or within ot
transfer to
to form a vi
it is more u
instruction
the same seg
sucn transfe
as even-odd
even-numbere
by transfer
convention t

al case the
transfer ve

various loca
her segments
other segmen
rtual addres
seful, thoug
at the gate
ment as the
r instructio
pairs, the S
d words. Th
instruction
hat is fixed

list of entry point
ctor — a series of
tions in the segmen
in the new ring th

ts requires a seque
s containing anothe
h not necessary, to
is a transfer to a
gate, out beyond th
ns occupy more than
PM must only permit
e SPM must know the
in a gate. This nu
in hardware.

s in a gate segment would
transfer instructions that

t beyond the gate boundary
at are not gates. Since
nee of several instructions
r segment's segment number,
specify that the transfer

relative location within
e call limiter. '.^ote if
one word of memory, such
calls to transfer to
number of words occupied

mber can be a system

In addit
caller's
called p
number s
argument
shall al
procedur
because
execu te
Such mul
must be

ion to the gate
program counter
rocedure. The c
o that access to
validation mech

so make availabl
e knows what its
a procedure may
bracket, and the
ti-ring procedur
able to compare

and access ch
and ring num

ailed procedu
arguments no
anism can be
e the current
own access r

have been ent
refore is not
es that perfo
the current r

ecks, the SPM
ber (Rcur) ava
re must know t
t already cont
verified by so
ring number s
ights are. Th
ered from a ri
necessarily e

rm software ar
ing with the r

shall i
ilable
he call
rolled
ftware.
o that
is is i
ng with
xecutin
gument
ing of

ake the
to the
er 's rinq
by the

Tne SPM
the called
mportant
in the
g at R2.
validation
the caller

33

In conjunction with being able to obtain the current ring number, the
3PM shall provide a mechanism whereby a multi-ring gate procedure
(defined as Rl < R2 < R3) can obtain, upon entry via a call from an
outer ring, the address of the stack segment for the current ring
without having to first write into memory. This is a requirement
because a multi-ring process must have a separate stack segment for
each ring, and a gate procedure, upon entry, cannot rely on any
information as to the location of the stack segment that may have been
passed to it by the caller. In the simplest case the stack segment
number is keyed by convention to the current ring numoer, thereby
simply requiring that the ring numoer be used to index into a table of
preset stack pointers. Note that this requirement only applies to
multi-ring gates when called from an outer ring. Procedures that are
not gates, or gates entered from within the execute bracket, always
execute in the ring of the caller and can thus believe the value of
the stack address stored in some register by the caller. Only when
the caller is from an outer ring must the stack address be
independently calculated by the called procedure.

Another transfer instruction that shall be recognized by the 3PM is
the return instruction. The only requirements for return are that the
returning procedure be able to specify the ring to which to return and
that returns to inner rings be prohibited. Otherwise the return
operates just like the transfer. Assume that Rto is the ring to which
the procedure desires to return:

Reff < Rto Rto becomes Rcur

Reff > Rto return denied, trap (inward return)

3.1.2.1.0.2 Trap and Trap Return

Traps are software initiated events (either intentional or ,
unintentional) to which the processor responds by saving the current
state of the processor in such a way that it can later be restored,
and transferring control to a specified memory location. In a secure
system, many traps occurring in a given ring are best handled by
software executing in that ring. Some traps, however, such as some of
those generated by the SPM, are best handled by inner ring software.
Page faults, for example, must be handled by the kernel since the user
must not be able to determine whether paging is taking place. In
addition, if the data stored during a trap is security sensitive in
that the user should not be allowed to restore the processor with such
data upon trap return, the trap (and probably therefore all traps)
must be handled by the kernel. An example of the latter can be"found
in the case where a processor might generate a trap in the middle of
instruction execution during the formation of an indirect address. If

34

the trap return sequence supported by the processor allows restarting
in the middle of the instruction, then part of the information saved
and restored by software must be the value of Reff. In such a case
there must be a mechanism whereby software cannot specify a restored
value of Reff lower than Rcur of the trap handling procedure. If the
SPM can make this check, then the trap may be handled by any ring. If
the SPM cannot verify this, then all traps must be handled by the
kernel and there need oe no facility for handling traps in an
arbitrary ring. Tne requirements below assume that the nardware does
not restore security-sensitive information during a trap return. If
the hardware requires that security-sensitive information be restored
oy software, and the hardware cannot verify this information, then
there is no requirement tnat traps to an arbitrary ring be allowed
(i.e., all traps shall be to the security kernel).

Typically in a processor there is a trap vector that consists of a
list of entry points for each class of traps. There may also be a
parallel list of storage areas in which the processor is to ston

A sample scenario of a trap sequence is as follows. Assume a trap of
type S has occurred. The processor indexes into the trap vector and
loads the program counter with the entry point specified for trap N.
It also stores state information in the proper storage area. Other
than address translation, the SPM need perform no verification on
these addresses since they were set up by the kernel. However, the
SPM must set a new current ring of execution. In addition, sufficient
information must be made available to the trap nandling procedure so
tnat the exact cause of the trap can be determined and so that the

A trap is very much like a call, except that the trap handler should
not be directly callable by the user. Thus, on a trap, the SPM shall
set Rcur equal to R2 of the trap handling procedure if the trap
occurred while in a ring greater than R2. If the trap occurred from a
ring less than or equal to R2 the value of Rcur should not change.

35

This allows a given trap handler to work in several rings. Since the
trap handler should not be callable directly from an outer ring, no
check for a valid gate procedure (R2 < R3) shall be made. Also, the
call limiter shall not be checked on entry into the trap procedure.

As stated previously, if the processor requires security-sensitive
information to be restored upon trap return, then it is sufficient for
the SPM to force the new value of Rcur to zero, rather than to the
software specified value R2.

The kernel can provide a mechanism whereby the user can specify a
procedure to handle a certain trap, and it is the responsibility of
the kernel to verify tnat the specified procedure is properly
accessible to the user before storing the entry point in the trap
vector. If the pointer for storage of the state information is
associated with the trap, the user should also be able to set that
pointer, subject to kernel validation. If there is only one storage
area for all traps, the kernel should provide a facility whereby the
user's trap handling procedure can examine the state information for
the trap that occurred.

The trap return instruction is identical to the return instruction
except that new state information must be loaded into the processor
and SPM so that the process can resume operation from the point of the
trap. In particular, for SPM traps generated due to access violations
or the directed trap field (DT) set in a descriptor (e.g., page
faults) it should be possible for the kernel trap handling procedure
to set the proper access or change the descriptor causing the trap so
that execution in the faulting procedure can be resumed as if the
descriptor were correct in the first place. Since a trap return may
possibly occur from a ring outside the kernel, the SPM shall check
that the new value of Rcur is no less than the current value of Rcur.

3.1.2.2 Device to Memory Interface

3.1.2.2.1 I/O Flow

There are two alternative data paths from device to memory specified.
Each device attached to a secure data communications processor shall
use at least one. The basic difference between the alternatives is
defined by the nature of the information resident in a DMA device,
where a Direct Memory Access (DMA) device, once initiated, will
control a series of data transfers to (from) memory.

The first type of device to memory mediation, premapped I/O,
interprets and translates memory addresses at I/O initiation and the
device subsequently uses absolute addresses. The alternative, mapped

36

I/O, requires SPM mediation of each memory request by the device. An
implementation of the 3PM to handle both types of flow is desirable,
although nothing herein shall preclude an implementation of the SPM
that would nandle only one type. If both types are handled, at I/O
initiation the SPM shall use information within the I/O device
describing mechanism (ref. section 3.1.2.3.2, I/O Descriptors) to
determine which flow is applicable.

3.1.2.2.1.1 Premapped I/O Flow

The premapped
illustrate th
and is not me
I/O initiatio
delivered to
3 PM's premapp
absolute memo
will occur di
addresses. T
locations to
that the kern
the I/O opera

I/O flow is show
e flow of' the add
ant to constrain
n the virtual add
the SPM. After s
ed I/O checker th
ry address and lo
rectly between th
he SPM shall mark
be referenced by
el will know not
tion.

n in figure o. This figure is meant to
resses associated with an I/O transfer,
system physical geometry. At premapped
ress associated with the transfer is
uitable checking (3.1.2.3.3) by the
e address is mapped by the SPM to an
aded into the device. Transfer of data
e device and memory using absolute
memory descriptors, for all memory
the device, at I/O initiation time so
to invalidate these descriptors during

3.1.2.2.1.2 Mapped I/O Flow

The address flow for the mapped I/O flow is illustrated in Figure s.
At mapped I/O initiation the virtual address associated witn the
transfer is delivered to the SPw, and then is loaded into the device
as a virtual address. The address of each item of data transferee
snail be delivered to the SPM for mapping and checkinq. Each address
delivered to the SPM shall be accompanied by the identification of the
transferring device so that the correct memory descriptor may be
obtained by the SPM. The SPM shall retain, for each active I/O
device, the following information. (An active I/O device is one for
which an initiated I/O operation has not yet terminated.)

1) the effective ring number the device is to operate at; and

2) some method oy which the SPM may access the memory descriptors of
the process that initiated the I/O operation. For example, the
of, may remember tne DBR contents at the time the I/O operation
was initiated.

Eacn access by the device, to memory, is to be mediated by the SPM.
The access checking performed by the SPM is equivalent to the checking
performed for memory accesses by a processor. Each access is

37

MEMORY

BUS

TRANSFER

INITIATION

1
%

i 1

CPU SPM DEV

Figure 8. Prenapped I/O Flow

30

I A - 46 , !4i

MEMORY
>

1 i

3US

TRANSFER

) i

INITIATION

'
i 1

1

1

1'

CPU m*

J
1

. 1

DEV

SPM

Figure 9. Mapped I/O Flow

39

evaluated at the effective ring number of the device, in the mode of
the device (read or write), using the descriptors contained in the
address space of the process that initiated the I/O operation.

If the SPH retains descriptors recently used by I/O devices in its
Fast Access Descriptor Store, the SPM shall provide the capability to
clear the FADS selectively, by device.

3.1.2.3 Processor to Device Interface

3.1.2.3.1 I/O Naming Structure

The software structure by which a processor names an I/O device will
vary with the particular processor chosen as the base for a secure
data communications processor. The naming structure of a secure data
communications processor shall have certain properties. It shall
allow for a virtual to absolute mapping of the device name on a per
process basis. It shall allow for the unique assignment of a device
to a process. It shall allow for the unique assignment (and naming)
of each physical device attached to a multidevice controller.

Two classes of I/O devices may be supported by a secure data
communications processor. The first class are Direct Memory Access
(DMA) devices. This class, once initiated by a processor order,
independently references memory to perform the required data transfer.
This class of device is the primary object of discussion in the
following sections. The second class of device are Programmed I/O
(PI/0). These devices do not independently reference memory and
return information from the device directly to the processor.
Included in this class are status requests to DMA devices whose
information may also be routed directly to the requesting processor.
For this class of device, the SPM need not support a data path from
device to memory but shall ensure that the requested information is
returned from the named device to the processor that made the request.

For both classes of device, the SPM shall require that accesses made
by processors to devices be mediated through I/O descriptors. Section
3.1.2.1.3.2 discussed two alternative means by which I/O descriptors
may be addressed within the set of descriptors rooted in the D8R. One
alternative places I/O descriptors in their own descriptor tree,
distinct from memory descriptors, rooted in the DBR. For the other
alternative, I/O descriptors are embedded in the same descriptor tree
as memory descriptors, and, in general, may be placed anywhere in the
descriptor tree that a direct memory descriptor may be placed. Figure
10 illustrates the placement of an I/O descriptor at the memory
segment descriptor level: the device assumes the process local name of
an entire segment of virtual memory. Figure 11 illustrates the

40

in

a
a
a
<

u
>
oJ
Q

<

X

> a a

u
&
V

0

u u
X
V
-

u
u
2
•-:

•H
fa

41

00

to
UJ TJ
tr
Q
O
<
UJ

u
<J —
>
UJ
Q J3

_l 1

<
3
>-
<r o
>

z

4J

u

<u
c
H

0
—I

-1

•~

•H
-
o
75

-

CD
•H

42

placement of an I/O descriptor at the memory page descriptor level:
the device assumes the process local name of the page of a segment of
virtual memory. For each of the above examples the diagrams assumes a
direct DBR. Of course, every SPM implementation shall also support
indirect DBRs (section 3.1.2.1.1 and 3.1.2.1.3.2).

3.1.2.3.1.1 Explicit Names

In this structure the processor is aware of explicit I/O names, and
issues them identified as I/O names. The SPM uses the descriptor tree
rooted in the DBR to find an I/O descriptor. As discussed in sections
3.1.2.1.3.2 and 3.1.2.3.1, there are two alternative means by which
explicit names I/O descriptors may be found in the set of descriptors
rooted in the DBR. Tne first requires a distinct tree of I/O
descriptors rooted in the DBR. The SPM, when presented with an
address identified as an I/O device name shall search for the I/O
descriptor within the I/O descriptor tree. The second structure
embeds explicit names I/O device descriptors within the memory
descriptor tree. For this alternative, the SPM, when presented with
an address identified as an I/O device name, shall transform the
presented virtual device name into a virtual memory address and search
the memory descriptor tree for an explicit name I/O descriptor. The
access control information applicable to the I/O descriptor is used to
check access rights.

3.1.2.3.1.2 Devices in Memory

In this structure a process has no explicit names for I/O devices, and
there may not be specific I/O instructions. The set of registers that
control a device is represented oy a range of absolute memory
addresses. The SPM will find the direct descriotor defining these
memory addresses in the memory descriptor tree rooted in the DER. The
access control information applicable to this memory descriptor is
used to control access rights.

3.1.2.3.2 I/O Descriptor

The SPM mediates the processor to device interface by treating all
references by a process to devices as virtual references, and mapping
them through an I/O describing mechanism. Two types of I/O
descriptors are specified: the type supported by a specific
implementation of this specification will be determined by the form of
I/O instruction supported oy the processor. This specification
assumes that any one minicomputer system will support one or the other
type of I/O instruction: devices in memory or explicit names. If a

43

system supports both kinds, the descriptors for each type of device
shall be distinguished by distinct descriptor type fields (T field).
Both types of I/O descriptors are direct descriptors: the I/O device
is directly described. Indirect descriptors describing an array of
direct I/O descriptors have precisely the same format as the memory
descriptors specified in section 3.1.2.1.3.1, Memory Descriptor.

3.1.2.3.2.1 Explicit Names Descriptor

In the explicit names structure, I/O descriptors are direct
descriptors contained in the tree of descriptors rooted in (located
by) the DBR (Figure 13') . The SPM shall obtain the appropriate
descriptor when presented with a virtual device name by the process.
The logical format of the explicit names I/O descriptor is diagrammed
in Figure 12. The descriptor fields are interpreted by the 3PM as:

Directed traps: The DT field of the descriptor provides for
software directed traps on access. At least two values of this
field must provided, one of which does not cause a trap. All
other values of the field cause an SPM generated trap.

Access control: Three pieces of information are defined: the A
field, the Ring Brackets, and Permissions. The A field
determines whether access control fields of the descriptor are to
be used to evaluate tne propriety of the access. Its
interpretation is identical to that of the corresDonding field in
the memory descriptor (ref. 3.1.2.1.3.1, Memory Descriptor). The
Rl, R2, and R3 fields define rings. Their definition is
identical to that of memory descriptors. Their interpretation
differs, only for the R3 field, as specified oelow. The R, w,
and £ fields define allowed modes of access. Their definition is
similar to that of memory descriptors. The only difference is a
the interpretation of the E field. This field, for I/O
descriptors, shall be undefined except for pertinent control
operations, e.g. diagnostic operations, microcode
loading/modification. The system specific operations shall be
allowed if and only if (E = ON) and (Reff < R3). Note that it is
not required that R3 > R2. In developing an I/O virtual device
address, an effective ring number (Reff) is developed by the SPM
in an identical manner to a memory access. The following rules
specify the allowed modes of access to an I/O device:

1) Read permission (initiate a read from the device) if and
only if (R = ON) and (Reff < R2); and

2) Write permission (initiate a write to the device) if and
only if (W = ON) and (Reff < Rl).

44

Q

5

CM
K

c
En

•-

G

n

s

H

Ed

CSi

U
3

—
to

45

<
Q.

a:
,\i

Li
c
5

M
U
U

•-i

>
u
Q

1)

60

46

Type: The T field identifies the type of the descriptor. I/O
descriptors shall be identified by at least one distinct value of
this field, which identifies a direct device descriptor.

Usage: The U and M fields shall have an interpretation similar to
memory descriptors. For each initiation of an input/output
operation from/to a device, if the device descriptor's U field is
OFF, the 3PM shall update it to ON. These fields shall be
updated only if there was no access violation. For each
initiation of an output operation to a device, if the device
descriptor's M field is OFF, the 3PM shall update it to ON.

Mapping type: The' AT field has two values: ON and OFF. If MT«ON
then the described device is a premapped I/O device, if MT*OFF
then the described device is a mapped I/O device.

Actual device: The PD identifies the physical device name to be
used upon access to this descriptor. This field must have
sufficient size and precision to accomodate all device narr.es
addressaole by the processor.

3.1.2.3.2.2 Devices as Memory Descriptor

In the devices in memory structure the I/O description mechanism shall
be a descriptor contained in the tree of memory descriptors rooted in
the DBR (ref. Figure 13). The interpretation of the fields of the
descriptor will be tne same as the interpretation of the explicit
names I/O descriptor with the following exceptions:

Location: The PA field provides the physical address of the oase
of the set of contiguous memory locations that constitute the
control registers for the device. It shall have sufficient size
and precision to address all device addresses supported by the
minicomputer system. This field replaces, for the devices in
memory type of device, the function of the PD field in the
explicit names I/O descriptor.

Limit: The L field limits the number of memory locations which
constitute the device's control registers. It shall have
sufficient size to accomodate the largest set of device control
registers. It shall have sufficient precision to accomodate the
smallest set of device control registers without waste of
physical address space.

47

3.1.2.3.3 I/O Initiation

In either I/O naming structure the SPM must be aware that an I/O
operation is being requested. In the explicit names structure the SPM
shall be informed by processor signal. In the devices in memory
naming structure the SPM shall conclude that an I/O operation is
requested by the type of the direct descriptor accessed (the T field
shall indicate an I/O descriptor). The SPM shall determine whether
the device is to be treated as a premapped device or a mapped device
from an examination of the MT field in the I/O descriptor.

In either I/O mapping structure, the SPM shall validate and translate
each access to memory by a device with respect to the descriptors of
the initiating process. An I/O operation is defined as a request for
a transfer to/from memory in which the processor specifies a device,
the direction (mode: read/write) of the transfer, and a single
starting address and extent. Some devices, particularly fast mass
storage (disks), support chaining of I/O operations. Under this
structure, this device reads a list of I/O requests from memory and
executes them sequentially. For chained I/O, the addresses used by
tne device to locate I/O requests dn memory shall also be validated
and mapped by the SPM. These devices are perhaps most conveniently
supported as mapped I/O devices.

In multiprocessor systems, each processor shall be caoable of
initiating I/O operations to any configured I/O device.

3.1.2.3.3.1 Premapped Initiation

When a device is to be treated as a premapped device, the SPM shall
ensure the following conditions before permitting the initiation of
each I/O operation:

1) that the device has been assigned to the process requesting
transfer; the assignment is indicated by the presence of a
descriptor;

2) that all memory addresses affected by the transfer (starting
address through starting address plus extent) have the proper
access permission for the effective ring number and access mode
of the process requesting the transfer;

3) that the range of affected memory addresses falls within the
range of memory described by one direct memory descriptor —
segment or page; and

48

4) that the descriptor defining the I/O device allows access in the
requested node at the effective ring number of the process
requesting the transfer.

If any of the above checks fail, the SPM shall initiate a trap to the
requesting processor. If all of the 3PM checks are successfully
passed, the SPM shall cause the following actions:

1) the descriptor for the affected memory addresses is marked (I/O
count field incremented) to provide notice to the security kernel
software that an I/O operation using this memory descriptor has
been initiated;

2) the descriptor for the I/O device is marked (U and/or M fields)
to indicate that an I/O operation has been initiated;

3) the SPM translates the requested virtual memory address and
extent to a physical address and extent and causes this
information to oe loaded into the device; and

4) the SPin allows the requested I/O operation to be initiated.

Transfer of data will occur directly between the device and memory.

3.1.2.3.3.2 Mapped Initiation

When a device is to be treated as a mapped device, the SPtf shall
ensure:

1) tnat the device has been assigned to the process requesting the
transfer — determined by the presence of an appropriate I/O
descriptor; and

2) that the descriptor defining the device permits access in the
requestea mode at the effective ring number of the process
requesting the transfer.

If either of these checks fail, the SPM shall initiate a trap to the
requesting processor. If all of the checks are successfully passed,
the SPM shall cause the virtual address to be loaded into the device
and the requested operation initiated. The SPM shall remember, for
each active device, the following information, stored at the time that
an I/O operation is initiated:

1) the effective ring number of the process initiating the I/O
operation; and

4y

2) the DBR or the set of memory descriptors, of the requesting
process, that will be referenced by the device during the I/O
operation, so that the SPM shall consistently interpret device
memory requests with respect to the descriptors of the initiating
process.

When the virtual address associated with each request by the device
for data transfer and the device identifier arrive at the 3PM, the 5PM
shall be able to retrieve the effective ring number previously stored
and the memory descriptor required by the virtual address. The memory
descriptor shall be one of the memory descriptors defined by the
security kernel for the process requesting the I/O transfer. The
checking undertaken by the SPM, for a device memory reauest, during a
mapped transfer shall be identical to the checking of a memory access
by a process running on a processor.

The SPM (or SPMs in a multiprocessor configuration) shall ensure the
following conditions on mapped I/O operations.

1) each device knows which 3PM to use to make requests for memory
access;

2) the SPMs shall ensure that there exists only one outstanding I/O
operation per device — this condition is imposed to guarantee
that, for any I/O operation, the virtual addresses presented by
the device are consistently interpreted with respect to the
descriptor structure of the process that initiated the I/O
request; and

3) the SPMs shall ensure that fast access copies of descriptors
retained for use by active mapped devices accurately reflect the
memory originals of the process requesting the I/O operation in
progress on the device. The SPMs shall provide sufficient
mechanism to invalidate copies of descriptors retained for the
use of devices if the original process descriptors are altered by
the kernel.

3.1.2.4 Device to Processor Interface

The only device to processor interface is the signalling of interrupts
by a device. In the discussion below, the term "device" will be used
to refer to not only I/O devices, but devices such as timers that can
interrupt a processor.

50

3.1.2.4.1 Interrupt Structure

When an I/O device signals an interrupt, that signal shall be directed
to the processor with which the device is currently associated. This
association may be determined at the time of initiation of the I/O
order, or fixed in hardware. For processor-local devices, such as
interval timers, this association may be fixed in hardware.

The processor snail have the ability to allow the interrupt handler to
determine the cause of the interrupt, and all information stored by or
in the SPrt at initiation of the last I/O order on that device shall be
available to software at interrupt time. In addition, the state of
the processor at interrupt shall be made available so that it can
later oe restored on return from interrupt.

Since, on return from interrupt, it is required that the interrupted
procedure continue to execute as if no interrupt had occurred, the
specific points in the instruction cycle and descriptor fetch during
which interrupt can occur must be well defined with respect to the
SPM. Another processor requirement is that the security kernel, at
its discretion, have the capability of delaying any interrupts for
certain periods of time. # The delaying of interrupts must be a
privileged operation as defined in section 3.7.2.

3.1.2.4.2 Interrupt Storage and Entry

The sequence of events occurring at interrupt time are exactly the
same as for traps, though the amount and type of information saved at
interrupt might be different depending on the requirements of the
processor. Upon recognition of an interrupt, the processor makes
references to an interrupt vector of entry points and possible storage
areas and the SPri shall set a new value of Rcur depending on the ring
brackets of the entry location. It is the responsibility of the
security kernel to set tne interrupt vectors properly. As for traps,
specification of the interrupt vector location must be a privileged
operation if allowed by the processor.

3.1.2.5 Processor to Processor Interface

3.1.2.5.1 Maintenance of Descriptor Structure

In a system configured with multiple processors each processor will
work with its own 3PM. Changes to the descriptor structure will be
made by the security kernel software, and in certain limited cases by
3PMS.

51

The processors shall use a system wide semaphore to coordinate
operations on descriptors. The processors shall have a Clear Fast
Access Store (CFAS) function. The CFAS function shall be capable of •
directing any configured 3PM (initiated from any processor) to clear
all or some of its fast access descriptor store. The CFAS function
shall incorporate a response mechanism to inform the processor of the
completion of the order by an SPM. The CFAS function shall
incorporate the ability to clear by descriptor type (the T field). If
mapped I/O is implemented the CFAS function shall have the ability to
clear an SPM by specific device name.

SPMs will modify the 13, M, and IOCT fields of memory descriptors.
Logically, an SPM must' seize and release the system wide "changing
descriptor" semaphore, with a trap generated on failure to seize. An
indivisible memory Kead-Alter-Rewrite function for setting U or M or
incrementing IOCT is highly desirable.

The processors shall provide indivisible memory test-and-set
instructions to coordinate processor access to shared memory.

3.1.2.5.2 General Inter processor Signa'lling

Each processor shall have the capability to signal any processor in
tne system. The signal function shall invoke the system interrupt
structure, causing the receiving processor to execute the software
defined interrupt routine.

3.1.2.to Operator to Processor Interface

The reguirements for the interaction of an operator with a secure data
communications processor are beyond the scope of this document. It is
anticipated that this interaction will be defined and controlled by
the security kernel. The secure data communications processor shall
have the ability to allow some portion of the security kernel to be
bootstrapped.

3.1.2.6.1 Standalone Bootstrap

when the secure data communications processor is to be operated in a
standalone environment, some I/O device shall be controlled by the
system operator to effect an initial memory load. In Figure 14 is
shown the contents of memory following tne initial memory load. This
figure is meant to be illustrative, and is not intended to preclude
other designs of the bootstrap mechanism. In this example, the SPM is
addressed as an I/O device using I/O descriptors. In Figure 14 a DBR,

52

r

DBR

0 TREE

>

MEMORY TREE

PROCEDURE

MEM ROOT

I/O ROOT

SPM

AS

DEVICE

I/O

DEVICE

PROC SEG

-—

DATA AREA

(DISPATCH)

Figure 14. Bootstrap

53

two I/O descriptors, two memory descriptors and a procedure segment
have been loaded. The DBR establishes the trees of I/O (2)
descriptors and memory (2) descriptors. The first I/O descriptor
establishes the SPM as an I/O device, the second establishes the
device for further memory loading. The first memory descriptor
establishes the loaded procedure, the second establishes a memory area
for further I/O input. It is assumed that the processor Program
Counter can be set to extract the first order of the procedure
segment. The DBR is initialized either externally or by convention,
by the bootload function, to a predefined value. The current ring is
initialized to be zero. The contents of the- Program Counter is
assumed to be a virtual address and the corresponding instruction is
fetched from memory using the initial DBR and memory descriptors.
Processing continues in ring zero (until explicitly changed by
software) with all addresses interpreted as virtual addresses.

3.1.2.6.2 Front End Bootstrap

When the secure data communications processor is used as a front end
for some host processor, it shall have the ability to be bootstrapped
from the host processor. Within the illustrative protocol of Figure
14, the initial memory load would be performed by "the host processor
through an interconnecting unit.

3.1.3 Major Component List

The secure data communications system is composed of the following
components:

1. 5 PM

2. Processor

3. Memory Units

4. Controllers

In applications where the secure data communications system is acting
as a front end for a host processor, an Interconnecting Unit will be
required (ref. section 10.1).

54

3.1.4 Government Furnished Property List

As specified by procuring agency

3.1.5 Government Loaned Property List

As specified by procuring agency

3.2 Characteristics

As secure data communications processors are intended for use over a
variety of applications and in a variety of environments, there is no
one set of characteristics that will be universally desirable. It is
anticipated that each procurement for a secure data communications
processor will refer to the architectural requirements specified
herein and to a specification of the precise characteristics required
for the intended application. Reference to a particular specification
established for a particular application is denoted herein by the
phrase "per individual specification".

3.2.1 Performance

3.2.1.1 Relative Performance

The performance of a secure system incorporating the SPM is denendent
on the implementation of the SPM and its method of connection to the
nonsecure components. Performance for a secure system can be roughly
estimated relative to a similar but nonsecured system. For a secure
minicomputer system, conforming to this specification, the performance
degradation introduced by the SPM, relative to an equivalent unsecured
system, shall not exceed 25%.

3.2.1.2 Data Cache

A data cache is one method (among many) to increase the processor
performance of a system. It is not the intent of this document to
require the incorporation of a data cache in the SPM. In the event
that a system implementation includes a data cache in the SPM, certain
cnaracteristics are required. The C field is in the memory
descriptors to allow tne software to instruct the SPM to keep data out
of the data cache. This facility must be provided in order to ensure
the consistency of the descriptor structure in the fast access
descriptor store, data cache, and memory when descriptors are
manipulated (by security kernel software) as data. This is most

55

easily ensured by the restriction that the areas of memory containing
descriptors not be placed in a data cache. Data cache must be
responsive to the CFAS function in clearing any data or physical
address information associated with a cleared descriptor.

The above requirement does not preclude cache implementations in which
the consistency of shared read/write data areas (particularly if
composed of descriptors, and most emphatically in multiprocessor
systems) is ensured by mechanisms other than not placing descriptors
in tne data cache.

3.2.2 Physical Characteristics

To reduce cost, "off-the-shelf" commercial grade equipment is utilized
to a maximum extent. However, due to the criticality of
communications systems in many DoD strategic and tactical
applications, coupled with the need for sparing, repairing and
replacing attritioned equipment, additional requirements will be
imposed which require modifications to commercial equipment or in some
cases new designs. More stringent requirements are necessary in the
following areas:

A. Availability - Redundant systems (without single-point failures)
with bit correction and low mean times to repair (MTTRs) and
roll-back and recovery capability may be required to meet on-line
availability requirements.

B. Reliability - More stringent carts selection, control, screening
and system/subsystem burn-in may De required.

C. RFI Compatioility - More stringent requirements may be imposed to
mitigate jamming and upset.

D. Tempest - Control of compromising emanations is required.

E. Radiation Survivability and Vulnerability - For certain strategic
applications, EMP and nuclear emissions survivability is
required.

F. Configuration Control - Suitable identification control and
accounting procedures will be required for critical-item
provisioning.

In general, the quality level of equipment suitable for digital
communications applications fall into three broad categories:

56

A. Ruggedized commercial equipment (MIL-E-415cs (-1))

B. MIL spec commercial compatible equipment (MIL-E-4l5d(-1),
MIL-£-1640G(4) , MIL-E-5400, curve II and III)

C. Sophisticated ad-hoc designs (MIL-E-5400, curve IV, MIL-£-elbb>)

Category A equipments are suitaole for most ground fixed-site
applications, Category B equipments are required for most mobile
applications and Category C equipments are required for space and/or
"high-rel" applications.

Packaging - Taole top, self contained and/or rack nountable (li):l)
conf igurations.

.sir Cooling - ambient air (dowers may be utilized subject to noise
constraints)

Size - per individual specification

weight - per individual specification

Power - per individual specification

Mounting and Access - per individual specification for ease of
maintenance and repair.

3.2.3 Reliability

The probability of failure, per hour of operation, shall be less the
u.uuuu5/hr for the Security Protection Module alone, and less than the
following figures for units of the system which it is to protect,
except as may be relaxed for particular installations.

Processor: <o.00UQ5/hr

Memory Unit
(12dK bytes): <u.uu0u4/hr

Controllers: < .UU004/hr

Tne SPM design shall be such that the probability that a hardware
component failure may cause a security breach may be reliably
considered to be less than u. uuuuul/hour of operation.

Reliability Plan - per individual specification

5?

Quality Control - per individual specification

Service Life - per individual specification

Specified MTBF - per individual specification

3.2.4 Maintainability

The following maintainability features are required:

Self-Test

A manually activated self-test feature shall be provided, to be
used as a means of detecting traps, exercising the equipment
during troubleshooting, verifying proper performance, and
performing self-test. Status-indicating capabilities shall oe
included. This feature shall be self-contained.

Mean-Time to Repair - per individual specification

Organizational Level Maintenance - per individual specification

Intermediate Level Maintenance - per individual specification

3.2.5 Environmental Conditions

Vibration

Operating: per individual specification

Non-Operating: (Requirements are for transportation, ergo
transportation cases and shock mounts may be utilized).

Land Carriers: 1.5 g's 5-500 Hz
Air Carriers: 1.5 g's 17-28 Hz

3.5 g's 44-500 Hz

Shock

Operating: per individual specification

Non-Operating:

(a) Bench drop tests
(D) 20 g's peak, 16 milliseconds

58

Temperature

Operating: Ambient air from 5U DT to 100 DT (lu C - 3o C)

Altitude/Pressure

won-Operating: Sea level to 35,1)00 feet

Operating: per individual specification

Humidity

Operating: b% to 95%

Transportability

The system hardware shall be designed and constructed to
withstand military and commercial transport via air, rail and
truck to installation sites without degradation of the equipment
performance.

3.3 Design and Construction

The equipment shall be designed and constructed to meet the general
design requirements of the prime governing specifications and the
general requirements for electronic equioment as specified in
MIL-STO-454D.

3.3.1 Materials Processes and Parts

Materials, processes and parts for use in the manufacture of the
equipment shall be in accordance witn the prime governing
specification and MIL-3TD-4540, Requirement 4. Parts shall be in
accordance with MIL-STD-454, Requirement 64.

3.3.2 Compromising Emanations Control (TEMPEST) and Electromagnetic
Compatioility

Because system equipment will be connected to communications lines and
controllers of various security levels and need-to-know categories,
all system equipment shall be designed to reduce compromising
emanations below the applicable radiation and conduction limits of
NACSEM 510u as modified oy AFNAG-9A unless otherwise specified. All
TEMPEST design shall follow the principles outlined in NACSEM 52u0.
Installation of system equipment shall conform to the applicable

5y

requirements of AFNAG-5B. Red/black separation requirements are
described in iviIL-HOBK-232.

Electromagnetic interference criteria shall be in accordance with the
emission and susceptibility requirements established by
MIL-STD-461A(Notice3). The interference reduction guide for Design
Engineers, DDC AD6l966b and AD6196b7 shall be used to establish
bonding and shielding criteria and to optimize interference
suppression circuits.

3.3.3 iMameplates and Product Harking

The identification nomenclature marking and labeling for the several
elements of the system shall be provided in accordance with
i"IIL-E-415bE., paragraph 3.6.

3.3.4 Workmanship

All units, component parts, and accessories supplied.shall be in
accordance with MIL-STD-454D, Requirement 9.

3.3.5 Interchangeability

All units shall oe designed and constructed in accordance with the
provisions of MIL-STC-454D, Requirement 7, concerning the use and
selection of interchangeability items, and with the definitions
contained in MIL-3TD-2aOA. Like units, assemblies, subassemblies, and
replaceaDle parts shall be physically and functionally
interchangeable, without modifications of such items or the equipment.
Module replacement shall be possible without removal of adjacent
modules. Software modules shall be intercnangeable among like
prbcessors.

3.3.6 System Safety

System safety engineering principles shall be applied throughout the
design, development manufacture, test, checkout, operation and
maintenance of all systems/equipment in accordance with MIL-STD-454D,
Requirement 1 and a (class 1 equipment).

6U

3.3.7 Hunan Engineering

human engineering design criteria and principles shall be applied in
accordance with MIL-H-46655A, MIL-STD-1472, and AFSC Design Handbook
1-3 in the design of the equipment, computer programs, and facilities
so to achieve safe, reliable, and effective performance by operator,
maintenance and control personnel, and to optimize personnel skill
requirements and training time.

3.4 Documentation

Documentation required for reviews and audits shall be provided in
accordance with MIL-STO-1521 (USAF).

3.5 Logistics

The Logistics Disciplines of DoD Directive 3100.35G shall be
integrated into the design and engineering constraints. Such
integration shall include provisions for logistics support for the
system's life cycle.

Maintenance, Supply Support, Support Equipment and Facilities are
normally per the individual Equipment Specifications.

3.o Personnel and Training

The communications processor system shall be designed to be
maintainable by Air Force skill level 5 personnel after completion of
formal training course (s).

3.o.l Training

Formal training requirements will include training equipment
requirements. This formal training includes tneory and hands-on
equipment training.

3.7 Major Component Characteristics

The secure communications system is composed of a 3PM and commercially
available components (3.1.3). The properties of the SPM are
delineated in 3.1 and 3.2. The commercially available components will
have features normally considered necessary in the area of
application. This paragraph lists the properties of the commercial

61

units required by their interconnection with the 5PM in a secure
system.

3.7.1 SPM

Properties as specified in this document.

3.7.2 Processor

The processor when used in conjunction with the SPM shall implement
the following functions:

1) Call/Return;

2) Clear Fast Access Store;

3) In#terprocessor Signal;

4) Dispatch; and

5) Argument validation.

The processor and SPM shall provide sufficient mechanism so that the
following instructions may oe restricted to the most privileged domain
of execution (ring zero):

1) Clear Fast Access Store;

2) Interprocessor Signal;

3) Dispatch;

4) instructions which control the setting of trap and interrupt
vectors as well as the recognition and control of traps and
interrupts;

5) instructions which control the state of the SPM (except for
Call/Return);

o) instructions which may change microcode either within a processor
or device; and

7) any function which influence the SPM's interpretation of the
descriptor structure defined by the security kernel.

62

The processor shall deliver all memory addresses identified as
addresses to the 5PM. When addresses are generated by the hardware in
response to special corditions (traps and interrupts), the special
nature of the addresses shall be signalled to the SPtf. If the
explicit-names structure is implemented (3.1.2.3.1.1), the I/O name
shall be delivered to the SPM identified as an I/O name.

The processor shall deliver all information concerning its internal
state to the SPM necessary to implement the functions of this
specification. It shall at least signal:

1) Order initiation;

2) Occurrence of trap or interrupt condition;

3) I/O initiation for explicit names;

4) Mode of access (read, write, execute, call, return); and

5) SPM control instructions.

The processor shall be capab'le of being controlled from the SPM. The
SPM shall be able to generate processor traps.

The processor shall be capable of being restarted after a trap (ref.
section 3.1.2.1.b.2) .

The processor shall provide an indivisible Test-Read-Alter-Rewrite
memory instruction so that software may cooperate harmoniously in
multiprocessor systems.

3.7.3 Memory

Memory suosystems shall have the capability to implement indivisible
wead-Alter-Rewrite functions that can be used by the software as a
nonambiguous semaphore mechanism.

3.7.4 Controllers

If the mapped I/O is implemented (3.1.2.3.1), a controller shall
present to the SPM the identification of a device requesting transfer.
A controller shall provide storage for each of the devices it controls
so that any interdevice (and hence potentially interprocess)

63

interference is discernable only in the time domain.
3.8 Precedence

This document takes precedence over all documents in section 2.0 when
a specific conflict in specification arises.

64

4.u Quality Assurance Provisions

4.1 General

Requirements for formal tests/verifications of the secure
communications processor performance, design characteristics and
operability shall be per the individual specification.
Tests/verifications will include design evaluation and operational
capability verification.

4.1.1 Kesponsibility for Tests

Unless otherwise specified, the contractor is responsible for
verifying that all specifications requirements have oeen satisfied.
Tne contractor may utilize his own or other facilities acceptable to
the government. The procuring agency will monitor tne contractor's
effort and reserves the right to perform any of tne verifications set
forth in the specification. The Government also reserves the eight to
designate special existing Government facilities for the performance
of specialized tests such as TEMPEST and/or nuclear environmental
testing.

4.1.2 Special Tests

A. Reliability Demonstration. Reliability demonstration shall be per
the individual specification.

6. Probabilistic Measure of Security Compromise. Collection,
recording and analysis of all failure data during testing shall
oe performed. Tests or analyses should establish to a high
degree of statistical confidence that the specified probabilistic
measure of security compromise is satisfied.

C. Security Features. The contractor shall rigorously demonstrate
that all security features of each secure data communications
processor are functionally correct.

D. Qualification Tests. Per individual specification.

4.2 Quality Conformance

The contractor shall perform the following inspections, analyses and
tests to verify the requirements of Section 3 of this specification.

65

4.2.1 Interface Definitions

The contractor shall test and demonstrate the performance of the
dedicated communication lines, electrical interfaces and logical
protocols. The contractor shall also demonstrate the standard
peripheral interfaces.

4.2.2 Throughput

The contractor shall demonstrate that the security controls do not
degrade throughput oy greater than 25%.

4.2.3 Physical Characteristics

The contractor shall verify by analysis or tests the following
physical characteristics.

A. weight limitations

B. Cooling requirements

C. Maintainability requirements

4.2.4 Environmental Conditions

Each production unit shall be subjected to the following environmental
acceptance test per the individual specification.

A. Temperature

3. Humidity

C. Vibration

D. Shock

E. Nuclear environment

F. Electromagnetic compatibility

G. TErfPEST

b6

5.U ^reparation for Delivery

The secure communications processor shall be delivered as an
integrated unit after appropriate testing in accordance with 4.U.
When used as the front end to a host processor, it will be delivered
in an integrated system with the host processor.

67

o.U Notes

o.l Descriptor Format and Field Encoding

The formats given for descriptors, and other constructs, are logical
ones, intended to identify required information. A specific
implementation of this specification may rearrange and reorganize
these formats as long as pertinent information is preserved. For
instance, the A field of a descriptor may be encoded into marginally
useful encodings of the permissions field. One such permission is
(R • OFF) and (i£ = ON) and (W = Ow) . A second instance of an
alternative encoding is the MT field of an I/O descriptor. This field
may be encoded into the T field yielding distinct descriptor types for
premapped and mapped I/O devices.

6.2 Virtual Device Addresses

In section 3.1.2.3.2 an option was discussed that uses one descriptor
tree for both I/O and memory descriptors. If such an option is
implemented, tnere must be a well defined mapping between virtual I/O
device names and generalized virtual addresses so that the descriptor'
for a specific I/O device can be located in the descriptor tree.
Since the size of virtual device addresses (for the explicit I/O
naming structure) is often much smaller than the size of virtual
memory addresses, the secure data communications processor
(particularly the 3PM) shall perform appropriate transformations of
the virtual device address so that the device address may be
interpreted in the same name space as virtual memory addresses. For
example, assume virtual memory addresses are lo bits wide, structured
as 2**o segments of 2**b pages of 2**6 words, and that the virtual
device address is 6 bits wide. One transformation (ref. Figure lu)
assumes one segment per device and forms a new virtual address by
concatenating 12 low-order zeroes to the original device name. A
second method (ref. Figure 11), more conservative of virtual address
space, assumes the o4th segment (e.g., segment number 63) is composed
of "pages", each page descriptor being a direct device descriptor.
For this case the new virtual device address may be formed oy
concatenating 6 high-order ones and 6 low-order zeroes to the original
device name.

The device name transformation algorithm for a specific implementation
is determined by the following factors:

1) the size of the virtual memory address;

2) the size of the virtual device address;

bo

3) the intended organization of the descriptor tree (interpretation
of virtual addresses); and

the intended placement of devices in the virtual address space.
For example, devices may be placed either as segments or pages
(see above discussion).

o.3 Virtual Address Pointers

It is highly desiraQle that tne secure data communications processor
support a general form of virtual address pointer. A logical format
is diagrammed in Figure 15. It is intended that this pointer replace,
in function, indirect address constructs in memory (and in processor
address registers, if possiole). The interpretation of the fields
snail be:

Virtual address: The VA field provides a virtual indirect address
of whatever size and precision supported by the processor. The
specific use of this field in effective address formation is, of
course, processor specific.

Validation ring: The VR field provides a software defined ring
number at which the address provided in the VA field snould oe
evaluated. The Vk field should be of sufficient size and
precision to accomodate any ring number defined by the system.
Before the VA field is used as an address by the processor, the
SPM's rteff must be updated to max(Keff,VR,Rl) where Rl is taken
from the descriptor controlling access to the resource in which
the pointer is contained.

Directed trap: The L)T field provides a software defined mechanism
for causing hardware traps on access (as a oointer) to a virtual
address pointer. The DT fiela shall have at least two values (On"
and OFF): if ON a processor trap is generated before the VA is
used as an address, if OFF the indirect operations proceeds as
specified above.

In conjunction containing providing virtual address pointers
containing ring numbers, it would be useful if hardware supported a
special set of pointer copying instructions (or pointer load
instructions). A pointer copy instruction would copy the pointer,
replacing the VR field of the pointer with the maximum of Reff and the
previous value of the VR field in the pointer. Thus, whenever an
inner ring procedure copies a pointer from a segment in an outer ring
to the inner ring, the effective ring of all references made through
tnat pointer will never be less than the ring in which the pointer was
originally located. Without a pointer copying instruction, software

o9

c

05
to
u

H -
3

•u

•H >

11
M
a
00

70

in the inner ring must check the validity (ring number) of the VR
field of any copied pointer to make sure that the value of VK is never
less than the ring from which the pointer was copied.

6.4 Process/£vent Reporting

Operation complete events should be directed to tne crocess initiating
the operation. Security kernels reguire soonis ticated process
structures. Emoedding tne mecnanism for reporting external events in
a well-defined manner directly to the process requires the following
capaoilities of both the processor and SPA:

1) both processor and SPA must understand the concept of process and
all attributes associated with a process: the processor (with
SPA) must be capable cf performing a sophisticated dispatch
algorithm;

2) the hardware must provide support for arbitrary scheduling
algorithms; and

3) the hardware must provide sophisticated primitives for process
cooperation (PV primitives, monitors, or their equivalent).

Conceptually the 3PH could be designed to include this functionality.
Such functionality would Oe impacted in a major way by software design
considerations. Insufficient understanding of these implications
precludes the requirement of this functionality in tne 5PM for a
secure system.

within the constraints of a particular application or software
environment, the implementation of a direct event/process reporting
mechanism in the SPM would ce nighly desiraole.

/o.b Simple Indirect Descriptor

The semantics of the indirect descriptor (ref. section 3.1.2.1.1,
Address Translation) specifies that these descriptors point to an
array of lower level descriptors. An important special case is tne
simple indirect descriptor: a descriptor that points to a single lower
level descriptor. The location field of this descriptor type gives
the physical memory address of the lower level descriptor and the
limit field may be ignored. Wo information from the fields in the
virtual address are needed to locate the next level descriptor once
the simple indirect descriptor is found.

71

This construct is very useful in to support sharing the construction
of segmented, unpaged virtual memory systems. Such a memory structure
is diagrammed in Figure lb.

A secure data communications processor, satisfying this specification,
need not implement a simple indirect descriptor construct. However,
its presence increases the range of application of a particular SPM
imo1ernentation.

6.0 Page Descriptors

In the full three-level descriptor structure illustrated in Figure 4,
the access control information is almost always placed in the segment
descriptors. This access control information includes the ring
orackets, mode fields, call limiter, and limit field. (The limit
field is included in this sense because the segment descriptor can
specify, to the resolution of one page, the size of the segment. The
simplest memory management scheme would not attempt to further
subdivide memory.) The only remaining information in a page
descriptor that actually needs to be there and cannot be inferred by,
the SPM is the physical address and directed trap (DT) field. If, in
a given implementation, it is known that a structure such as that in
Figure 4 will be the only structure used, the actual size of the page
descriptor can be much smaller than that of the segment descriptor.
Since there must be at least one page descriptor for every page of
physical memory (and most likely one page descriptor with DT field set
for every page of every active segment not in physical memory) the
page descriptors usually use up a great deal of physical memory. A
significant improvement in performance may be realized if the size of
page descriptors can be reduced, for examole, from 4 to 2 words of
real memory. There may also be an impact on performance due to fewer
accesses to memory for page descriptors.

Another method for reducing the size of page descriptors, that would
work in a more general structure, would be to include a field in the
first word of the descriptor that specifies whether that descriptor is
"short" or "long". The simplest hardware implementation of this
scheme might be to define a descriptor structure such that the
physical address, directed trap, and short/long indicator were packed
in the first one or two words, with the additional information in
subsequent words. By examining the first word fetched, the SPH would
know the descriptor format and either inhibit or simply ignore
subsequent word fetches.

OBR (DIRECT)

n
V«a-

SIMPLE INDIRECT

DESCRIPTOR

J

i b

v J

Figure 16. Simple Indirect Descriptor

73

6.7 Physical Address Size and Precision

Each descriptor that describes a construct located in memory shall
have sufficient size and precision in its location and limit fields so
that the construct may be addressed anywhere in physical memory
without waste of memory space. While memory space waste is the
responsibility of hardware, the hardware structure shall not preclude
efficient space management by software. A soecific implementation
must trade off software flexibility against 3PM cost. In this case,
SPM cost may be measured with respect to descriptor size. The most
flexible SPM implementation provides location and limit resolution to
tne word or oyte.

While specific requirements are implementation specific, bounds can be
placed on location size and precision requirements.

Precision: A descriptor need not address memory with greater
precision than the size of the smallest allocatable element: in
most implementations this element will be a descriptor. It shall
at least have a precision sufficient to precisely address and
limit the minimum of: the smallest array of descriptors, the
smallest area of allocatable memory, or the s'mallest set of
device registers for the devices in memory I/O naming structure
(if applicable). The precision of a descriptor may vary with its
level of interpretation. For example, direct memory descriptors
at the segment and page levels of interpretation may have
differing precision. This may be accomplished, using a fixed
descriptor format, by allowing the significance of the location
and limit fields to be a function of the level of interpretation
or additional encodings of the type field.

Size: Each location field shall be capable of addressing all of
physical memory at the precision of the descriptor. For example,
if the precision of the descriptor is the size of a descriptor
(several bytes) then the location field shall have sufficient
size to address all of memory in increments of its precision: the
size of a descriptor. Each limit field shall have sufficient
size to delimit tne largest addressable construct at the
precision of the descriptor. Using the above example, if the
precision of the descriptor is the size of a descriptor, then the
limit field shall have sufficient size to delimit the largest
construct addressable from the descriptor (for instance, a page)
modulo the size of a descriptor.

74

fa.b SPM Algorithmic Description

A sample flowchart detailing the address translation and access
control functions of the SPM is shown in Figure 17. This flowchart is
not intended to define the implementation, but rather to present an
algorithm that approximates the functionality of the SPH. The
flowcnart is constructed as a procedure named RCF that is called by
the CPU or I/O device on each memory reference. The arguments to REF,
appearing at the top of the flowchart, have the following meaning:

VADDR - the virtual address of the memory reference.

MODE - one of the five values: Read, Execute, write, Call,
Return. The MODE argument specifies the type of permission
required. If TYPE (see below) is I/O, the MODE is either
Read or write.

DATA - either an input argument, in which case this is data to be
written into memory at the virtual address VADDR, or an
output argument, in which case the contents of the memory
location read is returned here.

RESET - can be U or have the value RESET or IHD. If RESET, the
SPM is instructed to reset Reff to the value

1 a t:
Dry

sqi
If IND, the reference is a fetch of an

indirect address (virtual address pointer) by the CPU. This
value instructs the 3PM to examine the DT and VR fields of
the virtual address pointer in determining whether a trap
snould be generated or whether to update Reff.

DEVICE - identifies the active module requesting the reference.
It is either the value CPU, indicating the processor is
requesting the reference, or an I/O device number.

TYPE - is either I/O, indicating that the reference is to an I/O
device and the instruction being executed is an I/O
instruction, or MEMORY, indicating that the reference is to
memory.

In order to implement the algorithm in the flowchart, several internal
registers for storage of permanent and temporary values have been
created. These are illustrated in Figure 18 and are defined as
follows:

75

CALLING SEQUENCE: REFtVADDR, MODE, DATA, RESET, DEVICE, TYPE)

VADOR = VIRTUAL ADDRESS TO REFERENCE

MODE = READ, EXECUTE , WRiTE , CALL, OS RETURN VAODR

DATA = DATA TO BE REAO OR WRITTEN

RESET •• IF "RESET", RESET Reff . IF "iNO",

THIS IS INDIRECT FETCH. ' DATA

DEVICE: "CPU" OR I/O DEVICE NUMBER (REQUESTER)

TYPE. - "l/c" OR "MEMORY" (OBJECT)

a b c d
j

-—• SEGNO—— -— OFFSET—

VR DT VA

A . 0

<^ RE3E' ? *y
YES

Rlug TA3LE 'DEVICE). Rcjr -»-RiNG TABLE (CEviCE j.Re

i^l VAODR. SEGNO -*|V£S /0EV1CE;..CPU..5V

I I£S 1 ^ rr^—/

DBR TABLE (DEV.CE! — TDBR
RING TABLE (DEVICE! Rcur-»-TRcur j

RING TABLE (DEVICE) Reff-^-TReM J

VACDR. o -*-OFFSE"l
" b"-*-NEXT

G-

YES
-/TQBft. T: "INDIRECT^ ,ACDR SCGNOHM)FFSE"

"C" ••NEXT

TDBR. L —+. DESC |_
TDBR PA

i

oesc PA

a ESCL > OFFSET 7
V»c

1 YES

•RAP — OUT OF BOUNDS

ON DESCRIPTOR

M (DESC. PA + OFFSET)—»-GESC

X
<^DESCTDTTV

TRAP - DIRECTED

TR-AP# DT

<^DESC. A ?^>— *00
OFF

d>
Figure 17. SPM Flowchart

76

/voot ? y

, t ~
/ CESC.RI < TReH < OESC R3

\ ANO DESC. E i "ON"'

TNO

CALL

YES

TRAP- NO EXECUTE PERMISSION

OR NOT IN CALL BR-ACKET

READ
< TRtf f < OESC. R2 ANDOESC

„ • \ YES
R= ON ? >—-—

NO

<

-L
DEVICE = CPU AND VADCR SEGNO:TPC? >

YES

<^DESC. R2 < TRe't ? \^2 ^/QONE)

lYES —^

< VADDR.OFFSET < DESC.CL ?
YE!

NO

'RAP-OUT OF SOUNDS ON

CALL LIMITER

< OESC. R2-» RING TA8LE (DEV'CE).Rc >

RETURN

TRAP -NO' READ PERMISSION OR
NO* IN EXECUTE BRACKET

WRI
T
E"/~7 "Red < DESC. R' AND DESC.* •" ON" ?

t N°
| TRAP - NO WRITE PERMISSION OR

NOT IN WRITE BRACKET

'ES

'EXECUTE
»/^ DESC. Rl <*Re (I < 0 ESC R2 AND OESC.E :QN"?

yES

NO

TRA°- NO EXECUTE PERMISSION OR

NOT IN EXECUTE BRACKE"

S Tp.|l> TR cur ?

INC

*
TRAP-INWARD

RETURN

YES

MAX I TSell, DESC. R I)—»RING TABLE I DE'v I CE). Rf M

; MAX (TReff , DESC Rll—• TReM

~l

J_
TReff —» RING TABLE (DEVICE l.Rcurj

?"i
i
<

Figure 17. SPM Flowchart (Continued)

77

CiSEC
\ • / MEMORY \ /

I/O

INDIRECT

<^ NEXT? ^>

MEMORY

TRAP - I/O INSTRUCTION
EXECUTED ON NON- I/O

DESCRIPTOR

VAODR.DII YADDR OFFSET

-»OFTSE r

I
" C^NEXT ?^> VAOOR.d ^OFFSET

_L
<37>

I " l/C"

TRAP- NCN- I/O
INSTRUCTION EXECUTING

CN I/O DESCRIPTOR

U •_!

"RAP-OUT OF SOUNDS

ON SEGMENT

1

TRAP-NO ACCESS

CONTROL DESCRIPTOR
FOUND I

DESC PA+OFFSET-»-ADDS

INITIATE 1 /O OPERATION ON

NAMED DESC. PO

DEV CE

OB* - -•"•OBR TABLE (DESC PO)
Rcu(—» RING TABLEl DESC PD 1. Hcur

<^ MO OE ?

(DONE)

>

MIADOR)—o-DATA

EXECUTE 1

" WR.TS "

<^ RESET:

YES

DATA —»l
r: :\ YES I TRAP- -O.RECTEO TRAP

NDiRECT WORD

 »

v - ":".' >• —i IN

»
I

NO

' ON" —m DESC. M
f

MAX i OAT A VR.TRtfl 1 —-»-TR«M,

RING TABLE i DEVICE). Relt
i

1 1 I

171
: -a

'GN —»DESC J

WRITE DESC BACH

MEMORY

INTO

Figure 17. SPM Flowchart (Concluded)

78

ADOR

OFFSET

A

TDBR

NEXT

TR sf f

TR cur

TPC

DBR TABLE

PHYSICAL ADDRESS

OFFSET

| 0/ 1 |

T P/A L

"b'7 "c "/ "d"

RING

RING

SEGNO

DBR (CPU)

DEVICE # I

DEVICE #2

I

T
] 1

PA L

T PA L

T PA 1 L

1
1
I

T PA L
i

RING TABLE

DESC DT

CPU

DEVICE # I

Rcur Re ff

Rcur Reff

1
1
1

Rcur Reff

R2I R3 R E W PA OR PD L I CL

Figure 18. Internal SPM Storage

IOCT

79

RCF (PPOOtUS COUNTER ."EXECUTE," INSTRJCPON, "RESET" "CPU ", "MEMORY")

I/O r X NON-MEMORY REFERENCE
' INSTRUCTION _ -INSTRUCTION IN-

FORM VAOOR FROM

VIRTUAL OEVICE NO

UEKORY
REFERENCE

FORM VAOOR

FROM INSTRUCTION

REF (VAODR.O,
0ATA,'3ESET7"CPU" "I/O'

EXECUTE INSTRUCTION

INCREMENT PROGRAM COUNTER

(DC!
<l v YES ;]

INDIRECT jS ! "EF (VAOOR ,"READ," VAODR,"lNO," "CPU," "MEMORY" I

ONSTPUCTION ?\

0, CPU , MEMORY) TYPE

PERFORM OPERATION

ON DATA

INCREMENT PPCORAM COUNTER

i
(OCNE)

i REF i VAOOR ,OATA, " CALL ," 0, j CALL

"CPU ", "MEMORY")

VAOOR —W-PR05RAU COUNTER

REF (VAOOR,DATA "RETURN ",
0,"CPU/"MEMOKY")

RETURN

REF I VAOOR,DATA, "READ" | LOAD (TRANSFER

TYPE

TEST CONDITIONS

FOR TRANSFER

< TRANSFER

REOUIREO »

\ RO rNCREMENT

I PROGRAM COUNTER

VAOOR—•-"ROORAM COUNTER

STORE I PERFORM OPERATION
TYPE ON DATA

jREF (VAODR, DATA,"WRITE" 0,' CPU ',' "MEMORY" !

I
INCREMENT PROGRAM COUNTER

VADOR ^-PROGRAM COUNTER

OTHER
TYPES

Figure 19. Typical Instruction Loop

80

ADDA - temporary register in which a physical memory address is
saved.

OFFSET - temporary register in which an offset into a page or
descriptor table is saved.

A - a flag that is set to TRUE when a descriptor has been
encountered witn its A field set. If, after' the final
descriptor fetch, this flag is still FALSE, a trap will oe
genera ted.

T1J3R - a register, structured li<e the-DBR, in which to
temporarily "store the current Di3r< that applies to the
reference. See Figure 7 for a description of the internal
fields.

TReff, TRcur - temporary holding registers for the value of Rcur
and Reff used in this reference.

NEXT - has the value "o", "c", or "a",, indicating which portion
of V'AJLK is to be used as the next offset into a descriptor

. taole or page.

TPC - temporary storage for the segment number in which the
current instruction resides. This value is loaded with
VADDR.SEGNO at each RESET. Any subsequent read from memory
(until the next RESET) is allowed from this segment even
though there may be no explicit read permission.

biiR TABLE - is a table containing one OBR value for the CPU and
each device currently active. This table may or may not '
have a physical realization as memory internal to the SPH.
A new OSR is loaded into this table when an I/O operation is
initiated on a device.

RltiG TABLE - is a table corresponding to the DE>R table that
contains the values of Reff and Rcur for the CPU and for
each active device. The values of Reff must be saved, in
addition to Rcur, because different devices may access
memory between requests to reset Reff for any one device.

DESC - is internal storage for a descriptor that has been fetched
from memory. The internal fields are described in Figure o
and Figure 12.

The algorithm represented by the flowchart makes the following
assumptions:

81

I/O is mapped (see 3.1.2.2.1.2).

The same descriptor tree is used for both I/O descriptors and
memory descriptors {see 3.1.2.3.2).

The Explicit names structure is used for I/O (see 3.1.2.3.1.1)

Indirect addresses (virtual address pointers) contain ring number
and directed trap fields (see 3.1.2.1.2.2 and 6.3).

The algorithm is not reentrant. This means that the SPM is not
interrupted by a request for another memory reference until uOwE
has been reached.

The intended use of REF by the processor in a typical instruction
cycle is illustrated in Figure ly. This figure is only meant to be
illustrative and does not restrict the implementation. An actual
processor instruction cycle may be somewhat different in the placement
of various tests and computations. Each call to REF in this figure
represents either a memory reference or an I/O device reference. Note
that the algorithm defining REF keeps track of Reff for each active
device. This allows an I/O device access to memory at any time
between successive calls to REF in Figure 19.

o.y Switchable Field Widths

In 3.1.2.1.1 on address translation the requirement was stated that
the breakdown of the virtual address into four fields a,b,c,d be
carefully chosen to be optimal for the intended application. Since it
may be undesirable to construct hardware best suited for only one
application, an optional implementation can allow for more than one
specific breakdown of the virtual address into four fields. For
example the optimal segment size for one application may be 204b
words, whereas the most useful segment size for another application
may be 126 words. The change from one interpretation of virtual
address to another can be implemented through the use of switches or
jumpers, or more dynamically in software through the setting of
certain modes in the SPM or use of special fields in the descriptors
or DBR. In general, only a small number (two or three) choices"of
virtual address breakdown need be available to handle all foreseeable
applications.

o.lQ Stack Base Register

In 3.1.2.1.6.1 the call order was discussed, with some references to
its use. Normally, non-gate procedures with an execute bracket of
more tnan one ring (i.e., Rl ? R2 and R2 = R3) must be structured so
that they will execute properly in any of the rings from which they

82

are entered. Since, in a multi-ring environment there must be a
separate stack segment for each ring, tnere is a requirement that such
procedures must ootain the address of the stack segment before
beginning execution. This requirement is easily satisfied in software
by defining a standardized calling sequence that provides the stack
segment number in some register. The called procedure can safely
believe that this register truly points to the proper stack seament
oecause the caller, who provided the value, is running in the same
ring as the called procedure.

If the procedure is a gate, and it is called from above R2, then the
value of such a stack segment number cannot oe believed because tne
caller was running in a higner ring and might try to spoof the gate
procedure into using the wrong stack. However, the stack number is
not really required in this case because the called procedure can
assume that it is always executing at K2 when entered at its gate
entry. (There is an assumption that kl = R2 or that, by convention,
software does not enter a gate procedure unless the current ring is K2
or greater.) Generally, when the current ring is known, tne stack
segment number can easily be determined*by convention (e.g., tne stack
segment number for ring L>i is N) .

A problem arises, though, when programming generality dictates that a
gate procedure be programmed indeoendent of the ring in which it is to
be run. Another requirement for generality may be that a gate
procedure be entered at the same iocation, via the call order, from
any ring between Rl and R3. In order for such a procedure to find its
stack, it must first determine from which ring it was called. If it
was called from within its execute bracket, a register can be
believed. If it was called from above R2, the stack is that for R2.
The difficulty here is that computation of the stack address must take
place on every call, and must not require use of temporary storage
(i.e., the stack). Also, the fact that the value of the stack address
tor R2 must be programmed into the procedure makes the procedure
dependent on the virtual address of a given segment. Moreover, it is
difficult, when writing in a higher level language, to require that
the intended ring of execution be specified to the compiler.

The problem is easily solved through the use of a simple SPM feature.
Upon request, or perhaps automatically at every call, the SPM would
create a virtual address pointer to the stack by using the current
ring number as the segment number (or by some similar simple
transformation), and load that pointer into a register through which
software can indirect. In such a structure, all procedures could
assume, for example, tnat a given register always points to the base
of the stack for the current ring, regardless of which ring they were
entered from.

83

A more general variant cf this feature, required for multiple
execution points within a process, is an SPM-rnaintained stack base
register. Instead of simply using the current ring number to find the
stack, the stack base register provides the base address of a set of
stack segments. The current ring number is added to (or concatenated
with) the stack base register to find the right stack segment. The
stack base register itself is set by the kernel and is a function of
which of several execution points for the current process is being
invoked.

b.ll Ring Alarm Register

In a multi-ring environment each ring has a set of asynchronous
interrupts that it has set up, such as timers or external devices.
The interrupt vector, and the interrupts themselves, are all handled
by the kernel. However, if the interrupt is one that is of interest
to the outer ring, the kernel must invoke the appropriate outer ring
interrupt handler. This is no problem if the interrupt occurs while
the process is executing in that outer ring, since in that case the
kernel can simply invoke the proper procedure and save the state
information so that the outer ring will appear to have been
asynchronously interrupted.

If the interrupt occurs wnile the process is executing in the kernel
ring, particularly while in some kernel procedure that may not be
interrupted arbitrarily, the actual interrupt must be deferred until
the kernel is finished and ready to return to the outer ring. An
unsatisfactory solution would be to defer interrupts while in the
kernel using the hardware interrupt inhibit feature. (Hardware
interrupt inhibit should only be used in parts of kernel interrupt
Handlers ana other critical kernel code.) The software solution is to
rememoer that the interrupt occurred, and then, just ber'ore returning
to the outer ring, check if any interrupt handlers should be invoked.
This procedure makes kernel calls indivisible from the outer ring's
point of view.

84

The so
return
interr
for an
occurs
proble
the so
outer
is to
to the
r ing a
equal
then e

ftware
, and t
upt is
outer
during

m. A r
f tware
ring is
handle
ring b

larm tr
to the
asily i

solution has p
iming problems
not for the ri
ring (e.g. , an
r ing u) . A v

ing alarm regi
interrupt hand
to respond,

the interrupt,
eing returned
ap whenever th
ring alarm reg
nvoke the oroo

roblems d
The pr

ng to whi
interrup

e r y s i np 1
ster, mai
ler when
The numbe

The 39A
to on all
e ring be
ister. T
er interr

ue to ex
oblern is
ch the k
t to be
e hardwa
ntained
an inter
r that i
simply
return

ing retu
he ring
upt hand

tra over
more di

ernel is
handled
re featu
by the 3
rupt occ
s loaded
compares
orders a
rned to
alarm tr
ler in t

head at
fficult
returni

by ring
re solve
PM, is 1
urs to w
is the
this ri

nd gener
is great
ap handl
he outer

each
if the
ng, but
3 that
s the
oaded by
hich an
ring that
ng number
a tes a
er than or
er can
ring.

85

10.0 Appendix

lu.l Interconnection Unit

10.1.1 Intersystem Geometry

The connection of the secure communications processor to a host
processor througn an Interconnection Unit (IU) is shown in Figure 20.
On the communications processor side the IU is addressaole as absolute
memory and as a I/O device, when addressed as absolute memory it may
ce the source or sink for data flow from an I/O device. Where
addressed as an I/O device, it may be set to various operating modes
by the secure communications processor. If it is deemed necessary in
a particular application, the range of absolute addresses assigned to
the IU may be subdivided, and a connection path to the host processor
implemented for each subdivision. Each such subdivision would be
required to respond to its own I/O name.

lu.l.2 Internal ueometry

A functional diagram of a connection path in the IU is shown in Figure
21. This diagram is not intended to constrain the implementation of
an IU. The format adapter is intended to match the formats of the
secure communications system and the host system. The storage element
would contain state or mode information provided by the secure
communication processor, and any addresses required for interaction
with the host processor. The address response logic must respond to
the assigned range of absolute addresses and the appropriate I/O name.

lu.l.3 Inter processor Communication

The IU shall extend the interprocessor signal function of the secure
data communications processor to include the capability for
interprocessor interrupts between the host processor and a secure data
communications processor.

To facilitate the transference of information betv/een the secure
communications processor and the host processor, the IU will be able
to be set so that all of host processor memory addresses can be
accessed by the secure communications processor. In addition, all
information bits in a host processor memory unit shall be accessible
from the secure data communications processor.

86

TO HOST PROCESSOR

ADDRESS
IN

5ATA

IN

ADD
0

RESS
JT

DATA
OUT

STATE

STORE
FORMAT

ADAPTOR

I

ADDRESS

STORE

Jtr

CONTROL

ADDRESS

RECOGNITION

i 1 1

Figure 20. IU Function

87

TO HOST PROCESSOR

«a- A8SOLUTE MEMORY
ADDRESS

10 NAME

CONTROLLER

ABSOLUTE BUS

Figure 21. IU Intersystem Geometry

88

